

International Conference on High Voltage Engineering and Power Systems ICHVEPS 2017

2-5 October 2017 Inna Grand Bali Beach, Bali, Indonesia

The 72nd National Electricity Day 2017

Organized by

International Conference on High Voltage Engineering and Power Systems ICHVEPS 2017

2-5 October 2017 Inna Grand Bali Beach, Bali, Indonesia

The 72nd National Electricity Day 2017

Organized by

www.ichveps.org

2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS 2017)

Denpasar, Bali, Indonesia 2-5 October 2017

IEEE Catalog Number: ISBN:

CFP17M88-POD 978-1-5386-0946-0

Copyright © 2017 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP17M88-POD

 ISBN (Print-On-Demand):
 978-1-5386-0946-0

 ISBN (Online):
 978-1-5386-0945-3

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

ICHVEPS 2017

October 2-5, 2017, Bali, Indonesia

Call for Paper

Home > Call for Paper

ICHVEPS 2017 cordially calls for your paper with the focus on the following issues from the field of high voltage engineering and power systems

- 1. High Voltage Generation, Measurement, and Instrumentation
- 2. High Voltage Insulation System
- 3. Condition monitoring and diagnosis for power equipments and power systems
- 4. Dielectric materials and their aging mechanisms
- 5. New and environmental friendly materials for high voltage application
- 6. Application of high voltage in industry
- 7. Degradation assessment for power equipment
- 8. Transients Phenomena
- 9. Outdoor Insulation: Insulator, Environmental Effects
- 10. High Voltage Insulation for UHV AC and HVDC System
- 11. High Voltage Apparatus: Reliability and Maintenance
- 12. Grounding system
- 13. Power Quality
- 14. Electromagnetic Compatibility
- 15. Smart Grid Technology
- 16. High Voltage Engineering Education
- 17. Power system planning, operation and control
- 18. Power system stability
- 19. FACTS
- 20. Renewable energy and microgrid

You are invited to submit your abstract(s) through the abstract submission system that can be reached from the conference web site EasyChair

Abstract can be received by text only, no figures or graphs, with length of around 300 words. Detail of abstract submission can be seen in the conference web site on menu <u>Important Dates</u>.

Authors are invited to submit original technical papers in standard **IEEE Conference**

<u>format</u>. Please use <u>IEEE PDF eXpress</u> to generate pdf files or to verify that the PDF files are compatible with the IEEE Xplore format. All submissions should be written in English.

All presented paper will be submitted to IEEExplore and indexed in SCOPUS. The selected papers will be considered to be published in ITB Journal on Science and Technology as well as International Journal on Electrical Engineering and Informatics.

Download >> ICHVEPS Brochure

Copyright © 2017 ICHVEPS. Powered by School of Electrical Engineering and Informatics Bandung Institute of Technology, Indonesia

ICHVEPS 2017 Organization

General Chair:

Suwarno (Bandung Inst. of Tech)

General Secretary:

Umar Khayam (Bandung Inst. of Tech)

Treasurer:

M. Nurdin (Bandung Inst. of Tech)

Publications:

Deny Hamdani (Bandung Inst. of Tech)

Technical Program:

Chair: Nanang Hariyanto (Bandung Inst. of Tech)

Member:

Bambang Anggoro (Bandung Inst. of Tech)

Syarif Hidayat (Bandung Inst. of Tech)

Anita Pharmatrisanti (PT. PLN Persero)

Local Arrangement:

Chair: Rachmawati (Bandung Inst. of Tech)

Member:

Rizky Rahmani (Bandung Inst. of Tech)

Isnuwardianto (Bandung Inst. of Tech)

Made Gita (PT. PLN Persero)

International Advisory Committee

Suwarno (Indonesia)

Reynaldo Zoro (Indonesia)

Tumiran (Indonesia)

Y. Haroen (Indonesia)

M. Hikita (Japan)

E. Gockenbach (Germany)

B.W. Lee (South Korea)

Ja-Yoon Koo (South Korea)

Ja-10011 KOO (SOULII KOI ea

S Gubanski (Sweden)

A. Abu Siada (Australia)

Tian Hua Liu (Taiwan)
Peter Werle (Germany)

reter werie (Germany

Saifur Rahman (USA)

Eko Yudo Pramono (Indonesia)

Adi Soepriyanto (Indonesia)

M. Kamarul (Malaysia)

Ngapuli I.S. (Indonesia) G.H. Sianipar (Indonesia)

Iwa Garniwa (Indonesia)

Z. Nawawi (Indonesia)

S. Sekers (Turkey)

N. Sisworahardjo (USA)

G.C. Montanari (Italy)

K. Yamashita (Japan)

Y. Mitani (Japan)

Guan Jun Zhang (China)

Uwe Sichler (Austria)

N. Hozumi (Japan)

Sumaryadi (Indonesia)

I.A.G. Antari (Indonesia)

Sasongko P (Indonesia)

Invitation

International Conference on High Voltage Engineering and Power Systems 2017 (ICHVEPS 2017) will be held in Sanur-Denpasar, Bali, Indonesia on October 2-5, 2017. The Organizing Committee of ICHVEPS 2017 cordially invites you to participate in the conference.

About Bali

Bali lies between the islands of Java and Lombok and is one of more than 17,000 islands that makes up the Indonesian Archipelago. Lying just 8° south of the Equator, Bali boasts a tropical climate with just two seasons, wet and dry, a year and an average annual temperature of around 28° C.

The Balinese people have strong spiritual roots and despite the large influx of tourists over the years, their culture is still very much alive inspired by stories from the Ramayana and other Hindu epics. With a reputation as being one of the most beautiful and diverse tourist spots in the world, Bali attracts more than 4.5 million visitors a year, from all around the world.

Conference venue of ICHVEPS 2017 is Inna Grand Bali Beach Hotel. It is located on a wide stretch and white sand of Sanur beach, the most complete and competitive resort in Bali. Only 12 miles from Denpasar Ngurah Rai International Airport.

ICHVEPS 2017

International Conference on High Voltage Engineering and Power Systems 2017

> October 2-5, 2017 Bali, Indonesia

CALL FOR PAPERS

Organized by:

School of Electrical Engineering and Informatics Bandung Institute of Technology, Indonesia

Technically Sponsored by:

Power and Energy Society Chapter IEEE Indonesia Section

Cultural tour

Cultural tour will be arranged for conference participants and spouses. The tour will be done after the closure of the conference. The places and attractions to be seen during the cultural tour and its registration will be announced later via the conference web site.

Sightseeing tours

Bali Island is famous with variety of sightseeing spots. During the conference there will be a desk to help to arrange sightseeing tours participated by participants and or spouses/family. Details of this sightseeing tours will be released on the conference web site later.

Language

The working language of the symposium is English. All printed matter will appear in English.

Registration Fee

	Registration Fee
IEEE Member	USD 300
Non Member	USD 350
Student	USD 250
Local Academia	IDR 2,500,000

The registration fee includes conference kit, conference proceedings, admission to all sessions, welcoming reception, banquet, lunches, and coffee breaks.

ICHVEPS 2017 SECRETARIAT

General Secretary: Umar Khayam

School of Electrical Engineering and Informatics

Bandung Institute of Technology

Jl. Ganesha 10 Bandung 40132, Indonesia Phone: +62-81313759311/+62-85292198369

Fax: +62-22-2506291

E-mail: secretary@ichveps.org or

suwarno@ieee.org

Website: http://www.ichveps.org/

Main Topics

- High Voltage Generation, Measurement, and Instrumentation
- 2. High Voltage Insulation System
- 3. Condition monitoring and diagnosis for power equipments and power systems
- 4. Dielectric materials and their aging mechanisms
- New and environmental friendly materials for high voltage application
- 6. Application of high voltage in industry
- 7. Degradation assessment for power equipment
- 8. Transients Phenomena
- 9. Outdoor Insulation: Insulator, Environmental Effects
- 10. High Voltage Insulation for UHV AC and HVDC System
- 11. High Voltage Apparatus: Reliability and Maintenance
- 12. Grounding system
- 13. Power Quality
- 14. Electromagnetic Compatibility
- 15. Smart Grid Technology
- 16. High Voltage Engineering Education
- 17. Power system planning, operation and control
- 18. Power system stability
- 19. FACT
- 20. Renewable energy and microgrid

Abstract submission

You are invited to submit your abstract(s) through the abstract submission system that can be reached from the conference web site. Abstract can be received by text only, no figures or graphs, with length of around 300 words. Detail of abstract submission can be seen in the conference web site

Important Dates

Abstract Submission: July 1, 2017
Notification July 5, 2017
Final Manuscript Submission: Aug 15, 2017

CONFERENCE DAYS: October 2-5, 2017

Abstracting is permitted with credit to the source. For copying, reprint or republication, write to ICHVEPS 2017 Secretariat at School of Electrical Engineering and Informatics Institut Teknologi Bandung. All right reserved.

Copyright ©2017 by ICHVEPS2017 School of Electrical Engineering and Informatics, Institut Teknologi Bandung

IEEE 978-1-5386-0944-6

TABLE OF CONTENTS

No.	TS#	Paper No.#	Title	Authors	Page No.
1	IN-3		Data Analytics-Based Anomaly Detection in Smart Distribution Network	Akram Saad and N. Sisworahardjo*	1
2	IN-5		Review of Flexible AC Transmission Systems; Enabling Technologies for Future Smart Grids	Ahmed Abu-Siada	6
3	IN-8		Separation of Multiple Partial Discharge Sources in Power Transformer	Guan-Jun Zhang, Yan-Bo Wang, Ding-Ge Chang, Xian-Jun Shao, Jiang-Yang Zhan, and Wen-Lin He	12
4	TS1-1	23	Understanding the surface discharge activity with the nanofluid impregnated paper insulating Material	Kumari Swati, Kartik S. Sharma, and R. Sarathi*	18
5	TS1-3	49	PD Pattern of Various Defects measured by TEV sensor	Hikmah Prasetia*, Umar Khayam, Suwarno, Akihiko Itose, Masahiro Kozako, and Masayuki Hikita	23
6	TS1-4	68	Dissolved Gas Analysis (DGA) of Vegetable Oils under Electrical Stress	M.H.A Hamid, M.T Ishak*, M.M Arifin, N.I.A, Katim and N.A.M Amin,and N. Aziz	29
7	TS1-5	165	Noise Measurement in High Voltage Laboratory by using High Frequency Current Transformer and Loop Antenna	Jean Pierre Uwiringiyimana* and Umar Khayam	35
8	TS1-6	15	Correlation of Transformer Paper Deterioration to Oil Characteristics and Dissolved Gases	Rahman Azis Prasojo*, Karunika Diwyacitta, Suwarno and Harry Gumilang	40
9	TS1-7	73	Investigation of Water Tree Characteristic in XLPE Nanocomposites for Medium Voltage Cable Application	Juita Abdul Wahab*, Noor Syazwani Mansor, D. Ishak, M.Mariatti, Mohamad Kamarol, A. B. A. Ghani, and H. S. Halim	46
10	TS1-8	12	Performances of Long-term Coastal Field Aged Silicone-coated Ceramic Insulators under Clean and Salt Fog Conditions	Dini Fauziah*, Heldi Alfiadi, Rachmawati and Suwarno	51
11	TS2-1	114	Methods of Operating Mechanisms of High Voltage Circuit Breakers -An Overview	V. Indragandhi, Ashok Kumar L.*, and Vishnumoorthy K	57
12	TS2-2	155	Comparison of Fuel Consumption Efficiency of Technology Rejuvenation from Diesel Power into PLTDG In the Work Unit Pesanggaran PT. Indonesia Power UP BALI	M. SeptianAlamsyah Putra*, Deni Tri Laksono, Ngapuli I. Sinisuka, IGN Putra Subawa, Arry Pribadi, NGR Wiadnyana, and IGN Mahendra	64
13	TS2-3	150	Generator Shedding For Maintaining Power System Stability in Cibatu34-Mandirancan Subsystem	Yenni Tarid*, Innik Kusmarini and Adi Purwanto	69
14	TS2-4	82	Study on Reactive Power Optimization of ACDC Hybrid Distribution Network with Electric Vehicles	Hucheng Li, Haomin Guo*, Hangwei Ji, Liang Chen, Xiaodong Yuan and Wei Guo	73
15	TS2-6	157	Calculation of Impact Turning Gear Operation from Gas Turbines in Gilimanuk Bali	Naufalarizqa Ramadha Meisa Putra*, Krismanto Eka Widodo Nababan, Ngapuli I.Sinisuka, IGN Putra Subawa, Arry Pribadi, Purwakanta, and IGN Mahendra	79
16	TS2-7	32	Modelling of High Voltage AC Circuit Breaker Based on Circuit Breaker's Technical Data (Using Schwarz Black Box Arc Model)	Ibrahim Pramudya*, Muhammad Wardi Hadi, Umer Amir Khan, Ja Yoon Koo, B.W. Lee, and Suwarno	83
17	TS2-8	156	The Study of Air Pollution and Waste Generation due to Rejuvenation in the Pesanggaran, Bali	Dedi Tri Laksono*, Muhammad Sulthon, Fauzi Abdillah, Ngapuli I. Sinisuka, IGN Putra Subawa, Arry Pribadi, NGR Wiadnyana, IGN Mahendra	87
18	TS2-9	178	Criteria for Integration of Intermittent Renewable Energy to the Java Bali Grid	Eko Yudo Pramono and Suroso Isnandar*	91
10	TO2 1	26	Transmission Asset Life and Manager	Ninil I II hito Arrana Wandari wa a 1	05
19	TS3-1	26	Transmission Asset Lifecycle Management in PLN TJBB	Ninil Ukhita Anggra Wardani*, and Sylvina Naswil	95

20	TS3-2	112	Analysis and Comparison of Emission Reduction Effect of Real-time Electricity Price Considering Carbon Trading Permits	Yizihe Lang*, Shengnan Zhao and Yang Li	
21	TS3-3	35	Implementation of Risk Management in Electricity Transmission to Improve Planning Accuracy	Anna Dwita Paulus Sudin*, Jezzy Dwi Puspo and Ivan Taufik	105
22	TS3-5	33	Planning of Transformer Placement Using Reliability in PLN Transmisi Jawa Bagian Barat	Azzahraninna Tryollinna*, Annastasya Bastian and Ivan Taufik	108
23	TS3-6	87	Optimal Demand Side Response Considering to the Peak Price in the Peak season	Marwan Marwan* and Syafaruddin	112
24	TS3-7	37	Health and Risk Assesment of Power Transformer in PLN Transmisi Jawa Bagian Barat	Annastasya Bastian*, Azzahraninna Tryollinna and Cosa Pamungkas Prabaswara	117
25	TS3-8	30	Data Management in PLN TJBB: Initial Business Case	Sylvina Naswil*, Ninil Ukhita Anggra Wardani, and Cosa Pamungkas Prabaswara	122
26	TS4-1	42	Investigation for an Isolated Solar Plant Failure in Indonesia	Putu Agus Aditya Pramana*, Aristo Adi Kusuma, Nur Widi Priambodo and Buyung Sofiarto Munir	127
27	TS4-2	94	The design of alternative electric energy utilizes solar heat in the vehicle cabin with thermoelectric module	Aris Sunawar*, Iwa Garniwa and Chairul Hudaya	131
28	TS4-3	129	Potency of Waste to Energy - Bandung City Case Study	Bambang Anggoro, Angga Aprilian* and Burhanuddin Halimi	135
29	TS4-4	60	Load Sharing Control Between PV Power Plant and Diesel Generator to Mitigate Effect of PV Fluctuation Using PID Algorithm	t Yuli Astriani*, Khotimatul Fauziah, Hamzah Hilal, Riza, and Budi Prasetyo	
30	TS4-5	101	An Economic Analysis for Grid Connected Residential Photovoltaic System in Malaysia	Mohd Khairunaz Mat Desa*, Syafrudin Masri and Levinath Ganesan	145
31	TS4-6	139	Online power flow management based on GIS for active distribution network management	Indri Suryawati*, Ontoseno Penangsang and Suyanto	
32	TS4-7	56	Renewable Energy Penetration in Belitung Power System	Brigitta Wendha*, Rizky Rahmani, Muhammad Nurdin and Nanang Hariyanto	153
33	TS4-8	95	A Design of Palm Oil and Diesel Oil Fuel Mixture Heater System for Small Scale Diesel Power Plant	Ginas Alvianingsih* and Iwa Garniwa	159
34	TS5-1	85	Comparative Phase-Resolved Analysis of AC Corona Discharges at Very Low (0.1 Hz) and Power Frequencies	S. Morsalin* and B. T. Phung	165
35	TS5-2	113	Simulation of Goubau PCB Antenna as Partial Discharge Detector	Abrar Hakim* and Umar Khayam	170
36	TS5-3	41	Long Bowtie Antenna for Partial Discharge Sensor in Gas-Insulated Substation	Hanalde Andre*, Primas Emeraldi, Ariadi Hazmi, Eka Putra Waldi and Umar Khayam	175
37	TS5-4	137	Conductivity of transformer oil under high- frequency voltage	Yuli Rodiah*, T Haryono and Suharyanto	179
38	TS5-5	61	Ageing Effect of Vegetable Oils Impregnated Paper in Transformer Application	M. M. Ariffin, M. T. Ishak*, M. H. A. Hamid, N. I. A. Katim and A.M. Ishak, and N. Azis	183
39	TS5-6	24	Statistical Analysis for Internal and Surface Discharges Identification in XLPE Insulation under AC Voltages	Revi Aldrian*, Gian Carlo Montanari, and Suwarno	188
40	TS5-7	92	The Through Fault Current effect of 150/20 kV Transformers to Its Insulation Resistance and Tan Delta Test in PT. PLN (Persero) TJBB APP Durikosambi	Fajli Mustafa*, Shaga Shaulagara and Muhammad Ihsan	193
41	TS5-8	125	Comparison of CF3CHCl2 gas with SF6 gas as an alternative substitute for Gas Insulated Switchgear equipment	Tedy Juliandhy*, T Haryono, Suharyanto, and Indra Perdana	198

42	TS6-1	97	Automatization of Palm Oil Mixture Heater System for Small Scale Diesel Power Plant	Muhammad Very Nugroho* and Iwa Garniwa	204
43	TS6-3	158	Greenhouse Gas Emission Analysis of Energy Efficiency Program at Gilimanuk Gas Power Plant, Bali	Naftalin Winanti*, Asep Dadan Hermawan, Ngapuli I.Sinisuka, Indra Surya Dinata, IGN Putra Subawa, Arry Pribadi, NGR Wiadnyana, and IGN Mahendra	208
44	TS6-4	170	Overview and Operational Challenges of Jawa Bali Power System	Ahmad Murdani* and Adi Purwanto	214
45	TS6-5	81	Reactive Power Optimization of Distribution Network Including Photovoltaic Power and SVG Considering Harmonic Factors	Hucheng Li, Sai Liu*, Siyuan Lu, Liang Chen, Xiaodong Yuan, and Jian Huang	219
46	TS6-6	159	Analysis on the Implementation of Energy Management and Conservation Case Study: Pemaron Gas Power Plant	P.Ramadhani, Hardiles*, N.I, Sinisuka, Indra Surya Dinata, IGN Putra Subawa, IGN Mahendra, Purwakanta and I.N Sukma	225
47	TS6-7	160	The Role of Energy Management on Reducing Emission in Pemaron's Gas Power Plant	Nike Sartika*, M. Latieful Akbar, N.I. Sinisuka, Indra Surya Dinata, IGN Putra Subawa, IGN Mahendra, Purwakanta, and I.N Sukma	230
48	TS6-8	99	Analysis of Power Angle Difference for Defining And Reducing Oscillation On Interconnected System A Study on 150 kV South Sulawesi Grid	Jeremias Leda* and Ferdianto Tangdililing	236
49	TS7-1	38	Investigation of Fuse Rail in Low Voltage Switchboard Burn Down in Indonesia Distribution System	Aristo Adi Kusuma*, Putu Agus Aditya Pramana and Buyung Sofiarto Munir	242
50	TS7-2	51	Through Fault Current Effects on Distribution Transformer and prevention actions using Backup Protection: Case study of Kelapa Gading Transformer	Ira Mardya Sari, Azzahraninna Tryollinna*, Anna Dwita Paulus Sudin and Dahlia Deka Permata	247
51	TS7-5	21	Direct impact from the Through Fault Current of 150/20 kV Transformer to its Dissolve Gas Analysis test in PT. PLN (Persero) TJBB APP Durikosambi	Shaga Shaulagara*, Muhammad Ihsan, and Fajli Mustafa	253
52	TS7-6	43	Inrush Current Investigation of Capacitor Bank Switching for 150kV Electrical System in Indonesia	Putu Agus Aditya Pramana*, Aristo Adi Kusuma and Buyung Sofiarto Munir	259
53	TS7-7	118	The effect of the placement of testing equipment on the measurement validity of radiated emission parameter	Wisnu Ananda*, Seto Ayom Cahyadi, Deny Hamdani, and Jumail Soba	264
54	TS8-1	75	Impact of Solar Irradiation on PV Cell Emulating System in Series Connection Mode	Vu Minh Phap*, Naoki Yamamura, Muneaki Ishida, and Nguyen Thuy Nga	268
55	TS8-2	148	A Method to Generate the Reactive Power on Single-phase PV-Inverter	Muhammad Imran Hamid*, Adrianti, and Aulia Rahman	272
56	TS8-3	29	A 31-Level Asymmetrical Cascaded Multilevel Inverter with DC-DC Flyback Converter for Photovoltaic System	J. Gowri Shankar, J. Belwin Edward, K. Sathish Kumar* and I. Jacob Raglend	277
57	TS8-5	117	A Propose of Optimizing Power Generated by Photovoltaic Power Generation	Syafrudin Masri*, Norizah Mohamad, Muhammad Hafeez M.H. and M.Nazir Abdullah	283
58	TS8-6	126	Optimized Operation Scheme of On-Grid PV Farm to Grid case Lombok Island	Alyssa Diva Mustika*, Rizky Rahmani, Nanang Hariyanto and Muhammad Nurdin	289
59	TS8-8	36	Droop Control Implementation on Hybrid Microgrid PV-Diesel-Battery	Mochammad Erwin Susetyo*, Nanang Hariyanto, Arwindra Rizqiawan, and Sandro Agassi Sitompul	295
60	TS9-1	22	Synthesis of γ-Alumina Nanoparticles by Wire- Explosion Process: Characterisation and Formation Mechanism	Prem Ranjan*, Esun Selvam, R. Jayaganthan, H. Suematsu, P. Selvam, and R Sarathi	301

61	TS9-2	8	Lifetime estimation of Cellulose Paper in Natural Ester Dielectric Fluid	Cahyo Subroto*, Abi Munajad and Suwarno	307
62	TS9-3	62	Investigation on AC Breakdown Performance of Vegetable Oils with Insulated Electrodes	N. I. A. Katim, M. T. Ishak , N.A.M Amin*, S. Razali , M. H. A. Hamid , M. M. Ariffin, , and N. Azis	312
63	TS9-4	48	Degradation Mechanism of Power Transformer's Insulation System in PLN Indonesia	Harry Gumilang* and Fakhrul Risal	317
64	TS9-5	146	Diagnosis of Withstand Test Power Transformer Based on Through Fault Current Disturbance	Eki Farlen*, Devy Martoni, and Leo Agung	321
65	TS9-6	83	Influence of ZnO And Al2O3 Nanofillers on Electrical Treeing in XLPE Insulation	Noor Syazwani Mansor*, Juita Abdul Wahab, M. Fairus, D Ishak, M.Mariatti and Mohamad Kamarol, A. B. A. Ghani, and H. S. Halim	327
66	TS9-7	167	Effect of the Presence of Metal Box on Partial Discharge Waveform and Pattern Detected by High Frequency Current Transformer	Dedi Tri Laksono* and Umar Khayam	331
67	TS9-8	7	Effects of Loading Factor in Operating Time on Dielectric Characteristics of Transformer Oil	Karunika Diwyacitta*, Rahman Azis Prasojo, Suwarno and Harry Gumilang	335
68	TS10-1	52	Evolution of thunderstorm electrification before first lightning strike	Ariadi Hazmi*, Primas Emeraldi, Muhammad Imran Hamid, Fadjrin Anugrah Utama, and Nobuyuki Takagi	340
69	TS10-2	162	The upshot of hybrid defects in coaxial gas insulated switchgear	Ibrahim Musa Visa, Zulkurnain Abdul- Malek*, Nor Asiah Muhamad, Mohammed Imran Mousa, Zainuddin Nawawi, Muhammad Abu Bakar Sidik and Muhammad Irfan Jambak	344
70	TS10-3	66	Lightning Protection System For High Voltage Transmission Line In Area With High Grounding Resistance	Monalisa A. Malelak* and Reynaldo Zoro	350
71	TS10-4	138	The Effect of Mesh Size, Number of Rod, & Length of Rod Towards Touch Voltage, Step Voltage, and Ground Resistance in Grounding System	Ishak Kasim*, Syamsir Abduh, Sabrina and Nur Fitryah	
72	TS10-6	67	Induced Voltage on Medium Overhead Line Caused by Nearby Strike from Rocket Triggered Lightning	Krismanto Eka Widodo* and Reynaldo Zoro	362
73	TS10-7	31	Damper Winding Analysis on Synchronous Generator 10625 KVA in Short Circuit Condition	Andri Setiyoso*, Agus Purwadi and Yanuarsyah Haroen	
74	TS10-8	147	Lightning Performance Analysis Of Extra High Voltage 500 Kv 2 Circuits And 4 Circuits In Sumatera	Andi Junaidi* and Reynaldo Zoro	372
7.5	most st	1.0	D	TD:111 : T 0 3:17	2==
75	TS11-1	16	Reconfiguration of Distribution System for Loss Reduction Using Improved Harmony Search Algorithm	K.Rajalakshmi, K. Sathish Kumar*, S. Venkatesh and J. Belwin Edward	377
76	TS11-2	128	Determination of Optimal Power Capacity for Run of River Hydro Power Plant Based on Flow Duration Curve Using Newton's Interpolation Method	Hidayat*, Arnita, Cahayahati, and Mirza Zoni, and Saiful Jamaan	383
77	TS11-3	20	A New MPPT Method for Partially Shaded PV System by Combining Modified INC and Simulated Annealing Algorithm	Victor Andrean, Kuo Lung Lian*	388
78	TS11-5	59	Application of Wavelet Cumulative Energy and Artificial Neural Network For Classification of Ferroresonance Signal During Symmetrical and Unsymmetrical Switching of Three-Phases Distribution Transformer	Mochammad Wahyudi*, I Made Yulistya Negara, Dimas Anton Asfani, I Gusti Ngurah Satriyadi Hernanda and Daniar Fahmi	394
				Arwindra Rizqiawan*, Ramaga Nasution,	

80	TS12-2	86	Power Quality Monitoring of Single-Wire-Earth- Return Distribution Feeders	Ruihao Song*, Shibo Lu, Tharmakulasingam Sirojan, B. T. Phung, and Eliathamby Ambikairajah	404
81	TS12-3	149	Implementation of Wireless Temperature, Humidity, Lighting and Active Power Online Monitoring Using PLC for Early Stage of Miniature Energy Savings	Waluyo*, Nandang Taryana, Hendi Handian R., Andre Widura, and Arsyad Ramadhan D.	410
82	TS12-4	58	Wide-Area Frequency Security Event Detection	Chao-Yuan Lai*, Chih-Wen Liu and Chia- Cheng Cao	414
83	TS12-5	63	Requirement Framework of Smart Grid Software Architecture	Ramesh Ananthavijayan, S.Prabhakar Karthikeyan, I.Jacob Raglend, J.Belwin Edward*, and K.Sathish Kumar	418
84	TS12-6	177	Electric Field Analysis of 150 kV Compact Transmission Line	Umar Khayam*, Reynaldi Prasetyo, Syarif Hidayat	424
85	TS12-7	172	Dynamic System Monitoring and Control of Sumatera Power System Using PMU based on DFR	Dhany Harmeidy Barus and Eko Yudo Pramono*	428
86	TS12-8	163	POME to Biogass – Study of Potency of POME in Nangroe Aceh Darusallam (NAD) Province	Fandy Marpaung*, Atmonobudi Soebagio, and Qamaruzzaman	436
87	TS13-1	74	Partial Discharge Investigation on Palm Oil Using Needle – Plane Electrode Configuration and Electric Field Distribution Using ANSYS Maxwell	N. A. M. Amin*, M. T. Ishak, M. H. A. Hamid and M. S. Abd Rahman	440
88	TS13-2	9	Structural Changes Analysis of Transformer Insulation Paper in Natural Ester with Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDS)	Abi Munajad*, Cahyo Subroto and Suwarno	446
89	TS13-3	84	Modelling partial discharges in an insulation material at very low frequency	H.V.P. Nguyen*, B. T. Phung. and S. Morsalin	451
90	TS13-4	10	Leakage Current Characteristics Study on Electrical Equivalent Circuit of Field-Aged RTV Silicone Rubber Coated and Noncoated Insulators in a Coastal Area	Rachmawati*, Dini Fauziah, Heldi Alfiadi and Suwarno	455
91	TS13-5	55	Partial Discharge Measurements in XLPE Cables with Misplaced Grading System Under Different Applied Voltage Frequencies	Arief Setyowibowo*, Suwarno, Andrea Cavallini and Gian Carlo Montanari	460
92	TS13-6	168	Comparison of Peak to Peak Voltage and Number of Partial Discharge Detected by HFCT and Loop Antenna in Metal Enclosed High Voltage Equipment	Deni Tri Laksono* and Umar Khayam	466
93	TS13-7	76	Justification for Circuit Breaker Refreshment Program in PLN Trans-JBTB based on Technical Condition and Impact Criteria	M. R. Pahlevi*, W. F. Praditama, Daniel B. L.	472
94	TS14-1	175	Lightning Protection for Electric Railway in Indonesia Telecommunication and Signalling System	Reynaldo Zoro*, Ruslam R. Pakki, and Roni Komar	476
95	TS14-2	69	The Ground Potential Profile on the Earth Surface of 3 Vertical Rods of Grounding Systems	Bambang Anggoro*	479
96	TS14-3	96	Simulating Calculations of Transient Voltages and Insulation Coordination on 500 kV AC XLPE Submarine Cable Line	Shijin Tian, Xuezhong Liu*, Hao Liu, Shaohua Wang and Dahong Fu	484
97	TS14-4	98	Observed Preliminary Breakdown Pulses of Intracloud Discharges	Primas Emeraldi* and Ariadi Hazmi	488
98	TS14-5	154	Design and Testing PCB Rogowski-coil Current Sensor For High Current Application	Ary P. Nurmansah* and Syarif Hidayat	493

99	TS14-7	119	The effect of the grounding condition of line impedance stabilization network on the measurement validity of conducted emission parameter	Irwan Inayaturohman and Deny Hamdani	
100	TS15-1	161	Study on Tracking Time of Epoxy Resin Insulating Material under Artificial Accelerated Aging	Abdul Syakur*, Hermawan and Heri Sutanto	503
101	TS15-2	169	Leakage Current and Partial Discharge Characteristics of Epoxy Resin Material of Distribution Current Transformer in Salt Fog Pollutant Condition	Satia Zaputra*	508
102	TS15-3	166	Background Noise Level in High Voltage Laboratory Measured by using Partial Discharge Current Sensors	Muhammad Sukri Habibi Daulay* and Umar Khayam	514
103	TS15-4	65	Comparison of Partial Discharge Behavior in Mineral Oil and PFAE Under Influence of Spherical Metal Particle	Kiasatina Azmi*, Ahmad Zuhairi, Dahaman Ishak, and Mohamad Kamarol	
104	TS15-5	134	Derating Electromechanical Failing Load of Insulator Type U 120 B and Type U 120 BP Experience in Subsystem Bali	Adiyatma G. Pratama*, Senna Puger and Mhd A. Baiquni	524
105	TS15-6	176	Magnetic Field Analysis of 150 kV Compact Transmission Line	Umar Khayam*, Rachmawati, Reynaldi Prasetyo, Syarif Hidayat	528
106	TS15-7	70	Designing of Characteristic Test Equipment for Over Current Relays with Current Capacity of 30 Amperes	Naufal Murda Hagyana, Chairul Gagarin Irianto*, Maula Sukmawidjaja	532
107	TS16-1	142	Composite Reliability Evaluation of Existing 500 kV Jawa Bali Power System	Sarjiya*, Sasongko Pramono Hadi, Tumiran, and Ahmad Adhiim Muthahhari	538
108	TS16-2	39	Condition Assessment Model for GIS Operating under Tropical Conditions	A.P. Purnomoadi*, A. Rodrigo Mor and J.J. Smit	544
109	TS16-3	144	Reliability Improvement Analysis on 20 kV Distribution System using Distributed Generation Injection Based on Renewable Energy	Lunnetta Safura*, Nanang Hariyanto, Muhammmad Nurdin, Rizky Rahmani	550
110	TS16-4	141	Composite Reliability Analysis of 500 kV Jawa- Bali System Related to the Northern Jawa Generation and Transmission Expansion Plan	Tumiran, Sarjiya*, Sasongko Pramono Hadi, and Syaifullah Rangga Haryo Nugroho	556
111	TS16-5	171	The Implementation of Probabilistic Reliability Assessment in order to get mapping of load point index in Java Bali 500 kV Substation	Suroso Isnandar, Marwah, Fajar Ari K.*, Prastio	561
112	TS16-7	78	FMECA Development in PLN Trans-JBTB	R. Y. Trianto*, M. R. Pahlevi, B. Z. Bardani	567

WELCOMING MESSAGES

Distinguish participants and guests, welcome to Bali, welcome to Indonesia and welcome to The International Conference on High Voltage Engineering and Power System 2017 (ICHVEPS 2017). The conference will be held in Inna Grand Bali Beach Hotel Sanur Bali, Indonesia on 2-5 October 2017. The ICHVEPS 2017 is a biannual conference organized by the School of Electrical Engineering and Informatics, InstitutTeknologi Bandung (ITB), Indonesia with support of PT. PLN (Persero) and technically sponsored by IEEE Indonesia Section, Power and Energy Society Indonesia Chapter and Indonesia Inter-University Forum on High Voltage Engineering. The

conference is designed to be an international forum for exchange ideas, discussion and dissemination of research results and technologies in the field of High Voltage Engineering and Power System from power utilities, universities, research institutes as well as industries. The conference received a large number of abstracts/papers submission. After review, finally 125 papers from 12 countries (Indonesia, Malaysia, India, Australia, China, Japan, Taiwan, Brunei Darussalam, France, Sweden, USA and Nigeria were accepted. The papers will be presented in 2 invited plenary sessions and 16 technical sessions. All accepted papers will be sent to IEEE Explorer (and Scopus) and selected papers will be published in International Journal on Electrical Engineering and Informatics and Journal of Engineering and Technological Sciences.

I hope ICHVEPS 2017 will provide all of you a fruitful meeting, memorable experience and pleasant stay in Bali

I am looking forward to welcoming you in Bali, Indonesia.

Prof.Dr.Ir. Suwarno,

General Chairman of ICHVEPS 2017

ICHVEPS 2017 ORGANIZING COMMITTEE

ORGANIZING COMMITTEE

General Chair:

Suwarno (Institut Teknologi Bandung, Indonesia)

General Secretary:

Umar Khayam (Institut Teknologi Bandung, Indonesia)

Treasurer:

Muhammad Nurdin (ITB, Indonesia)

Publications:

Deny Hamdani (ITB, Indonesia)

Technical Program:

Chair: Nanang Haryanto (ITB, Indonesia)

Members:

Bambang Anggoro (ITB, Indonesia) Syarif Hidayat (ITB, Indonesia)

Suroso (PT. PLN Persero)

Anita Pharmatrisanti (PT. PLN Persero)

Ariadi Hazmi (UNAND, Indonesia)

Local Arrangement:

Chair: Rachmawati (ITB, Indonesia)

Members:

Rizky Rahmani (ITB, Indonesia)

Isnuwardianto (ITB, Indonesia)

Made Gita (PT. PLN Persero)

Rahman Azis Prasojo (ITB, Indonesia)

Arpan Zaeni (ITB, Indonesia)

Cahyo Subroto (ITB, Indonesia)

Abi Munajad (ITB, Indonesia)

Abrar Hakim (ITB, Indonesia)

Fauzi Ashari (ITB, Indonesia)

Muhammad Sukri Habibi Daulay (ITB, Indonesia)

Jean Pierre Uwiringiyimana (ITB, Indonesia)

Dini Fauziah (ITB, Indonesia) Fahmi Nurul Alimi (ITB, Indonesia)

Satrio (ITB, Indonesia)

Fadhilal Chusna (ITB, Indonesia)

Mistriana (ITB, Indonesia)

International Advisory Committee

Suwarno (ITB, Indonesia)

Reynaldo Zoro (ITB, Indonesia)

Tumiran (UGM, Indonesia)

Y. Haroen (ITB, Indonesia)

M. Hikita (KIT, Japan)

E. Gockenbach (TU Hannover, Germany)

B.W. Lee (Hanyang Univ., South Korea)

Ja-Yoon Koo (Hanyang Univ, South Korea)

S Gubanski (Chalmers Univ, Sweden)

A. Abu Siada (Curtin Univ., Australia)

Tian Hua Liu (NTUST, Taiwan)

Peter Werle (TU Hannover, Germany)

Syamsir Abduh (TRISAKTI Univ., Indonesia)

Eko Yudo P. (PLN, Indonesia)

Adi Soepriyanto (ITS, Indonesia)

Salama M. (UNHAS, Indonesia)

Rudi K. (UNTAN, Indonesia)

Ngapuli I.S. (ITB, Indonesia)

G.H. Sianipar (ITB, Indonesia)

Iwa Garniwa (UI, Indonesia)

Z. Nawawi (UNSRI, Indonesia)

S. Sekers (ITU, Turkey)

N. Sisworahardjo (Tenneessee Univ., USA)

G.C. Montanari (Bologna Univ., Italy)

K. Yamashita (CRIEPI, Japan)

M. Kamarol (USM, Malaysia)

Guan Jun Zhang (Xian Jiatong Univ, China)

Uwe Sichler (TU Graz, Austria)

N. Hozumi (Toyohashi Univ, Japan)

Sumaryadi (PLN, Indonesia)

I.A.G. Antari (UNUD, Indonesia)

Sasongko P (UGM, Indonesia)

Sarjiya (IEEE PES, Indonesia Chapter)

IN-1

09.00 – 09.30

Ir. Amir Rosidin, MM.

PT. PLN (Persero)

"High Voltage Engineering and Power Systems
Challenge in Indonesia Power Network"

IN-2

09.30 – 10.15 **Prof. Masayuki Hikita** *Kyushu Institute of Technology, Japan*"High Voltage Electrical Insulation in Next
Generation Power Module"

IN-3

10.45 – 11.30 **Dr. Nurhidajat Sisworahardjo** *University of Tennessee at Chattanooga, USA*"Data Analytics-Based Anomaly Detection in Smart Distribution Network"

IN-4

11.30 – 12.00 **Mr. Kazuhiro Akima** *PT. Honda R&D Indonesia* Honda Electric Vehicle Technology

IN-5

12.00 – 12.45 **Prof. Ahmed Abu Siada** *Curtin University, Australia*"Review of Flexible AC Transmission Systems;

Enabling Technologies for Future Smart Grids"

IN-6

08.30 – 09.15 **Dr. Muhammad Aziz** *Tokyo Institute of Technology, Japan*"Extended Utilization of Electric Vehicles in Electrical Grid Services"

IN-7

09.15 – 10.00 **Prof. Mohammad Masoum** *Curtin University, Australia*"Coordination of Plug-In Electric Vehicle

Charging in Smart Grid: Challenges and

Opportunities"

IN-8

10.15 – 11.00 **Prof. Guan-Jun Zhang**Xi'an Jiaotong University, China
"Separation of Multiple Partial Discharge Sources in Power Transformer"

IN-9

11.00 – 11.45 **Prof. Yanuarsyah Haroen**Bandung Institute of Technology, Indonesia
"Past, present and future in Indonesian Public
Mass Transportation. Perspective - Traction
Control Systems"

IN-10

11.45 – 12.30 **Dr. Robert Saers**ABB Corporate Research, Sweden
"Digitalization of Electric Power System"

ICHVEPS SECRETARIAT

Dr.Ir. Umar Khayam School of Electrical Engineering and Informatics Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 Indonesia

Phone: +62-81313759311 (Rachma) /+62-85292198369 (Rizky)

Fax: +62-22-2506291

E-mail: secretary@ichveps.org or suwarno@ieee.org

Website: http://www.ichveps.org/

Distinguish participants and guests, welcome to Bali, welcome to Indonesia and welcome to The International Conference on High Voltage Engineering and Power System 2017 (ICHVEPS 2017). The conference will be held in Inna Grand Bali Beach Hotel Sanur Bali, Indonesia on 2-5 October 2017. The ICHVEPS 2017 is a biannual conference organized by the School of Electrical Engineering and Informatics, InstitutTeknologi Bandung (ITB), Indonesia with

support of PT. PLN (Persero) and technically sponsored by IEEE Indonesia Section, Power and Energy Society Indonesia Chapter and Indonesia Inter-University Forum on High Voltage Engineering. The conference is designed to be an international forum for exchange ideas, discussion and dissemination of research results and technologies in the field of High Voltage Engineering and Power System from power utilities, universities, research institutes as well as industries. The conference received a large number of abstracts/papers submission. After review, finally 125 papers from 12 countries (Indonesia, Malaysia, India, Australia, China, Japan Taiwan, Brunei Darussalam, France, Sweden, USA and Nigeria were accepted. The papers will be presented in 2 invited plenary sessions and 16 technical sessions. All accepted papers will be sent to IEEE Explorer (and Scopus) and selected papers will be published in International Journal on Electrical Engineering and Informatics and Journal of Engineering and Technological Sciences.

I hope ICHVEPS 2017 will provide all of you a fruitful meeting, memorable experience and pleasant stay in Bali

I am looking forward to welcoming you in Bali, Indonesia.

Enson

Prof.Dr.Ir. Suwarno, General Chairman of ICHVEPS 2017

School of Electrical Engineering and Informatics Institut Teknologi Bandung, Indonesia October, 2017

ICHVEPS 2017 ORGANIZING COMMITTEE

General Chair:

Suwarno (Institut Teknologi Bandung, Indonesia)

General Secretary:

Umar Khayam (Institut Teknologi Bandung, Indonesia)

Treasurer:

Muhammad Nurdin (ITB, Indonesia)

Publications:

Deny Hamdani (ITB, Indonesia)

Technical Program:

Chair: Nanang Harvanto (ITB, Indonesia)

Members:

Bambang Anggoro (ITB, Indonesia) Syarif Hidayat (ITB, Indonesia) Suroso (PT. PLN Persero)

Anita Pharmatrisanti (PT. PLN Persero) Ariadi Hazmi (UNAND, Indonesia)

Local Arrangement:

Chair : Rachmawati (ITB, Indonesia)

Members:

Rizky Rahmani (ITB, Indonesia) Isnuwardianto (ITB, Indonesia) Made Gita (PT. PLN Persero)

Rahman Azis Prasojo (ITB, Indonesia)

Arpan Zaeni (ITB, Indonesia) Cahyo Subroto (ITB, Indonesia) Abi Munajad (ITB, Indonesia) Abrar Hakim (ITB, Indonesia) Fauzi Ashari (ITB, Indonesia)

Muhammad Sukri Habibi Daulay (ITB, Indonesia)

Jean Pierre Uwiringiyimana (ITB, Indonesia)

Dini Fauziah (ITB, Indonesia) Fahmi Nurul Alimi (ITB, Indonesia)

Satrio (ITB, Indonesia)

Fadhilal Chusna (ITB, Indonesia)

Mistriana (ITB, Indonesia)

International Advisory Committee

Suwarno (ITB, Indonesia)

Reynaldo Zoro (ITB, Indonesia)

Tumiran (UGM, Indonesia)

Y. Haroen (ITB, Indonesia)

M. Hikita (KIT, Japan)

E. Gockenbach (TU Hannover, Germany)

B.W. Lee (Hanyang Univ., South Korea)

Ja-Yoon Koo (Hanyang Univ, South Korea)

S Gubanski (Chalmers Univ, Sweden)

A. Abu Siada (Curtin Univ., Australia)

Tian Hua Liu (NTUST, Taiwan)

Peter Werle (TU Hannover, Germany)

Syamsir Abduh (TRISAKTI Univ., Indonesia)

Eko Yudo P. (PLN, Indonesia)

Adi Soepriyanto (ITS, Indonesia)

Salama M. (UNHAS, Indonesia)

Ngapuli I.S. (ITB, Indonesia)

G.H. Sianipar (ITB, Indonesia)

Iwa Garniwa (UI, Indonesia)

Z. Nawawi (UNSRI, Indonesia)

S. Sekers (ITU, Turkey)

N. Sisworahardjo (Tenneessee Univ., USA)

G.C. Montanari (Bologna Univ., Italy)

K. Yamashita (CRIEPI, Japan)

M. Kamarol (USM, Malaysia)

Guan Jun Zhang (Xian Jiatong Univ, China)

Uwe Sichler (TU Graz, Austria)

N. Hozumi (Toyohashi Univ, Japan)

Sumaryadi (PLN, Indonesia)

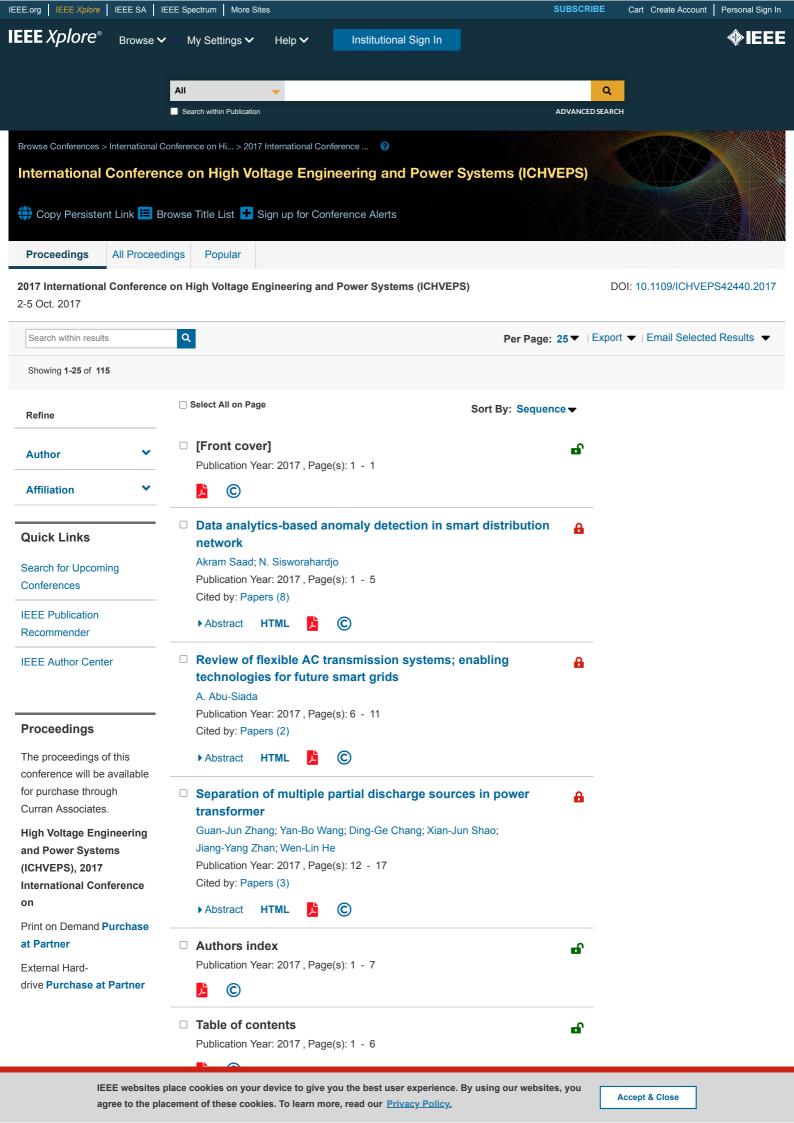
I.A.G. Antari (UNUD, Indonesia)

Sasongko P (UGM, Indonesia)

Sarjiya (IEEE PES, Indonesia Chapter)

ICHVEPS SECRETARIAT

Dr.Ir. Umar Khayam School of Electrical Engineering and Informatics Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132


Indonesia

Phone: +62-81313759311 (Rachma) /+62-85292198369 (Rizky)

Fax: +62-22-2506291

E-mail : secretary@ichveps.org or suwarno@ieee.org

Website: http://www.ichveps.org/

Kartik S Sharma; Kumari Swati; R. Sarathi Publication Year: 2017, Page(s): 18 - 22 ▶ Abstract HTML □ PD pattern of various defects measured by TEV sensor Hikmah Prasetia; Umar Khayam; Suwarno; Akihiko Itose; Masahiro Kozako; Masayuki Hikita Publication Year: 2017, Page(s): 23 - 28 Cited by: Papers (5) ▶ Abstract HTML **(C)** □ Dissolved gas analysis (DGA) of vegetable oils under electrical stress M. H. A. Hamid; M. T. Ishak; M. M. Ariffin; N. I. A. Katim; N. A. M. Amin; N. Azis Publication Year: 2017, Page(s): 29 - 34 Cited by: Papers (8) ▶ Abstract **(C)** HTML □ Noise measurement in high voltage laboratory by using high frequency current transformer and loop antenna Jean Pierre Uwiringiyimana; Umar Khayam Publication Year: 2017, Page(s): 35 - 39 Cited by: Papers (8) ▶ Abstract HTML **©** □ Correlation of transformer paper deterioration to oil characteristics and dissolved gases Rahman A. Prasojo; K. Diwyacitta; Suwarno; H. Gumilang Publication Year: 2017, Page(s): 40 - 45 Cited by: Papers (8) HTML **(C)** ▶ Abstract □ Investigation of water tree characteristic in XLPE nanocomposites for medium voltage cable application J. A. Wahab; Noor Syazwani Mansor; D. Ishak; M. Kamarol; M. Mariatti; A. B. A. Ghani; H. S. Halim Publication Year: 2017, Page(s): 46 - 50 Cited by: Papers (1) ▶ Abstract HTML **©** Performances of long-term coastal field aged silicone-coated ceramic insulators under clean and salt fog conditions Dini Fauziah; Heldi Alfiadi; Rachmawati; Suwarno Publication Year: 2017, Page(s): 51 - 56 ▶ Abstract HTML Evolution of thunderstorm electrification before first lightning strike Ariadi Hazmi; Primas Emeraldi; Muhammad Imran Hamid; Fadjrin Anugrah Utama; Nobuyuki Takagi Publication Year: 2017, Page(s): 340 - 343 HTML **(C)** The upshot of hybrid defects in coaxial gas insulated 8 switchgear

inipregnated paper insulating material

Publication Year: 2017, Page(s): 344 - 349 ▶ Abstract HTML □ Lightning protection system for high voltage transmission line in area with high grounding resistance Monalisa A. Malelak; Reynaldo Zoro Publication Year: 2017, Page(s): 350 - 355 Cited by: Papers (1) **(C)** ▶ Abstract HTML ☐ The effect of mesh size, number of rod, & length of rod towards _____ touch voltage, step voltage, and ground resistance in grounding system Ishak Kasim; Syamsir Abduh; Nur Fitryah Publication Year: 2017, Page(s): 356 - 361 Cited by: Papers (3) ▶ Abstract HTML (C) Induced voltage on medium overhead line caused by nearby strike from rocket triggered lightning Krismanto Eka Widodo Nababan; Reynaldo Zoro Publication Year: 2017, Page(s): 362 - 367 Cited by: Papers (2) ▶ Abstract (C) HTML □ Damper winding analysis on synchronous generator 10625 **KVA** in short circuit condition Andri Setiyoso; Agus Purwadi; Yanuarsyah Haroen Publication Year: 2017, Page(s): 368 - 371 ▶ Abstract HTML (C) □ Lightning performance analysis of extra high voltage 500 Kv 2 circuits and 4 circuits in Sumatera Andi Junaidi; Reynaldo Zoro Publication Year: 2017, Page(s): 372 - 376 Cited by: Papers (2) ▶ Abstract **HTML (C)** □ Reconfiguration of distribution system for loss reduction using improved harmony search algorithm K. Rajalakshmi; K Sathish Kumar; S Venkatesh; J. Belwin Edward Publication Year: 2017, Page(s): 377 - 378 Cited by: Papers (4) ▶ Abstract HTML **(C)** □ Determination of optimal power capacity for run of river hydro power plant based on flow duration curve using newton's interpolation method Hidayat; Arnita; Cahayahati; Mirza Zoni; Saiful Jamaan Publication Year: 2017, Page(s): 383 - 387 ▶ Abstract HTML □ A new MPPT method for partially shaded PV system by combining modified INC and simulated annealing algorithm K. L. Lian; V. Andrean

 Application of wavelet cumulative energy and artificial neural network for classification of ferroresonance signal during symmetrical and unsymmetrical switching of three-phases distribution transformer

Mochammad Wahyudi; I Made Yulistya Negara; Dimas Anton Asfani;

I Gusti Ngurah Satriyadi Hernanda; Daniar Fahmi

Publication Year: 2017, Page(s): 394 - 399

Cited by: Papers (6)

▶ Abstract HTML

 □ Damping improvement by using virtual resistance controller for DC-DC boost converter dahono-1

Arwindra Rizqiawan; Ramaga Nasution; Pekik Argo Dahono; Tri D. Rachmildha

Publication Year: 2017, Page(s): 400 - 403

HTML

Cited by: Papers (3)

▶ Abstract

ı,

(C)

1 2 3 4 5 >

IEEE Personal Account

CHANGE USERNAME/PASSWORD

Purchase Details

PAYMENT OPTIONS

VIEW PURCHASED DOCUMENTS

Profile Information

COMMUNICATIONS PREFERENCES
PROFESSION AND EDUCATION
TECHNICAL INTERESTS

Need Help?

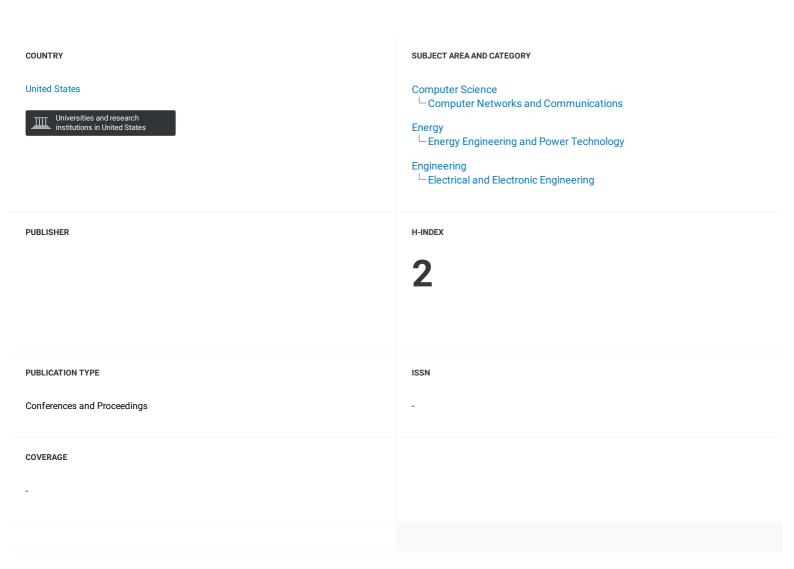
US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT **Follow**

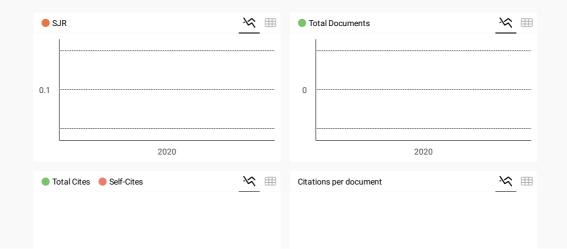
About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

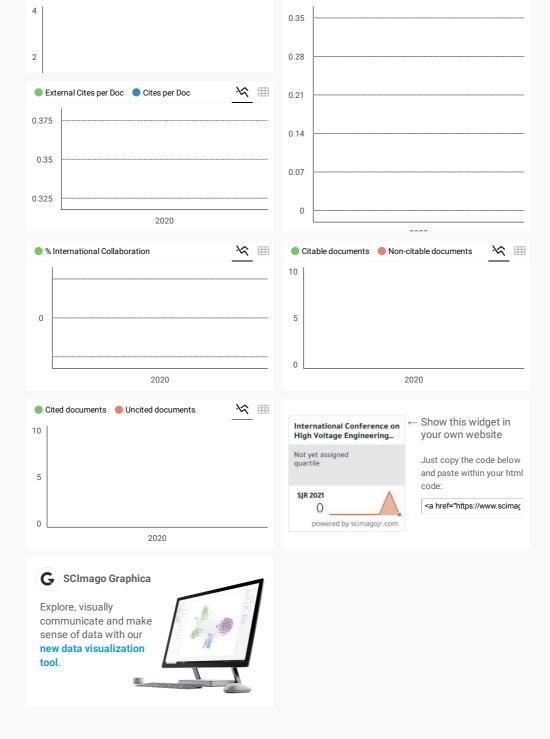
© Copyright 2022 IEEE - All rights reserved.

Home

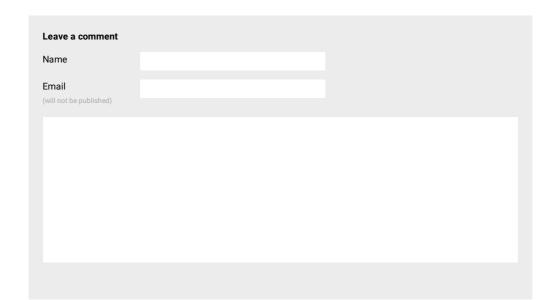
Journal Rankings

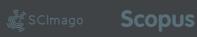

Country Rankings


Viz Tools


Help

About Us


International Conference on High Voltage Engineering and Power Systems, ICHVEPS 2017 - Proceeding



Metrics based on Scopus® data as of April 2022

References

Keywords

Metrics

CHANGE USERNAME/PASSWORD

PAYMENT OPTIONS

VIEW PURCHASED DOCUMENTS

COMMUNICATIONS PREFERENCES

PROFESSION AND EDUCATION
TECHNICAL INTERESTS

US & CANADA: +1 800 678 4333

WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

Implementation of Wireless Temperature, Humidity, Lighting and Active Power Online Monitoring Using PLC for Early Stage of Miniature Energy Savings

Waluyo*, Nandang Taryana, Hendi Handian R., Andre Widura, Arsyad Ramadhan D

Department of Electrical Engineering
Institut Teknologi Nasional Bandung
Bandung, Indonesia
Email: waluyo@itenas.ac.id

Abstract— This research would be the early stage in saving and managing energy, especially electrical energy in a miniature. The research has been done in the assembly of components, namely temperature, humidity, lighting and electric active power sensors, where they were equipped by 4-20 mA transmitters. These transmitters entered to the four channel analog module of programmable logic controller (PLC). From the PLC, using a router, the signals were transmitted to the computer in wireless remotely. Thus, besides the parameter quantities could be read in the panel, they also could be read in the computer in an online wireless remotely. Based on the testing results, for the humidity 58-60% in range, the error between the site display and PLC in the computer was only 0.3-0.4%, and for the temperature 28-30°C, the error between the site display and PLC in the computer was only 0.2-0.3°C. The error of active power depended on the power itself. For example, the rating load of 25 and 100 watts, the remote display were 23 and 96 watts respectively. While, the time for signal transmission was under 0.1 second.

Keywords—PLC; transmitter; analog module; wireless; temperature; humidity; lighting; active power

I. INTRODUCTION

Energy is a basic need to drive almost all economic and social activities. From time to time, energy need is necessary to human being, while the increasingly scarce global energy reserves. Wasteful use of energy and the excess will have an impact on environmental degradation, decline in product competitiveness and long-term socio-economic upheavals. Along with the increasingly complex energy problems, the management of energy use on the load side, especially at office buildings and industry, it is time becomes an important part in the company's management structure [1].

A creation of new paradigm of changing times is one way to maintain growth and increase customer value in a fast paced business environment today. Therefore, it is necessary to play an important role in the development of industry and proactively addressing dynamic market [2]. Non-residential buildings have shown a rapid increase in the use of advanced technology and control systems with a variety of drivers, many of which are labeled 'smart'. If the term of smart building represented a separate thing, more advanced group, it will provide an opportunity to focus forward to the future

development of non-domestic buildings [3]. Smart buildings have been researched and developed over the last three decades. This seems to be the case in all aspects of the built environment sector; smart sensors, smart materials and smart meters in the building looks to be the latest and most advanced technology in our efforts to develop high-performance buildings. Smart cities are commonly seen built into future urban environment, with a growing number of inhabitants, demanding more functionality than the limited resources and tighter building regulations. By focusing on the main driver behind the construction of the past and the present, it is necessary to assess the meaning of smart or intelligent building and bringing together the definitions for smart building which is a more advanced group, learned from building upon the success and limitations of terminology previously and meet the criteria in where the building is worth a high performance. It is clear that the design of the expected performance of nondomestic buildings change throughout history. In order for the changes that would be described as progress, it is necessary that the produced drivers of evolution have met to a higher level than before. Drivers for building development can be said to revolve around adding value to a building. This value will depend on the context and building category, but has traditionally been formed of a theme related to the cost of building throughout life, and performance, comfort and satisfaction of their building. Reduction in energy consumption has now become the driving force in him, as increasingly stringent regulations and awareness of climate change. It is recognized that the modern building as a significant design criteria. With the cost of operating a non-domestic buildings were significant when compared to the cost of capital. It is suggested that a more suitable representation of the driver is capable to retain its value over long periods of time under changing conditions of use and externally. Therefore, three different drivers to build on the progress is long life, energy efficiency and comfort and satisfaction. A building that serves forward would have minimized energy consumption, although consistently enable maximization of performance, comfort and satisfaction of its inhabitants during the long lifetime [4].

The purpose of research was to design of monitoring system on the environmental parameters (temperature, humidity and lighting), and electrical power consumption in wireless, and analysis of electrical power consumption associated with existing standards.

II. RESEARCH METHOD

Fig. 1 shows a plan for the design diagram of monitoring system. In the design, the plan was installed sensors and / or measuring parameters of the environment and electrical power. The measurement data was sent to the computer wirelessly. The stored data in the computer were processed and analyzed for the use of electrical energy.

In the design, 4-20 mA transmitters were installed for temperature, humidity, lighting and electrical power. Furthermore, the data came into the input analog module of PLC. From PLC, the data sent to the Router, then sent in wireless, and finally into the computer.

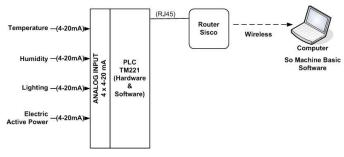


Fig. 1. Circuit diagram of monitoring system

The wiring diagram of electric power measurement was equipped by 4-20 mA transmitter as shown in Fig. 2. The supply was from source 220 V, single phase. While the current could set as maximum of 5 A. The display could be set as wattmeter or amperemeter. The 4-20 mA transmitter.

Fig. 2. Wiring diagram of electric power measurement equipped by 4-20 mA

III. RESULTS AND DISCUSSION

Fig. 3 shows the monitoring kits of environmental parameters, which were temperature, humidity and lighting sensors, and electric power meter, where they were equipped by 4-20 mA

on every equipment those connected to the analog input modul of PLC. From the analog input module, the data came to the PLC controller, where the data would be processed. Furthermore, the data were sent to the router, and from the router, they were sent to the computer in wireless. The power supply 24 Vdc was for supplying the temperature and humidity sensors. The electric power meter was loaded by a lamp.

Fig. 3. Monitoring kits of environmental parameters and electric power

Fig. 4 shows the configuration processes of PLC type and the analog module selection. For this case, the PLC was TM221 type, and using the four channel analog module. The used PLC TM221CE16R series, 16 I/O (9inputs and 7 outpus). While, the used input analog module was TM3T14 series, where it was 4 (four) inputs.

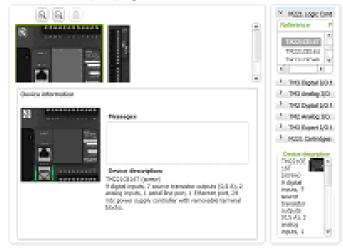


Fig. 4. Configuration processes of PLC and analog module selection

Fig. 5 shows the configuration processes of software for the analog inputs. The analog input addresses were %I1.0, %I1.1, %I1.2 and %I1.3 for lighting, temperature, humidity and power parameters respectively. The lighting, temperature, humidity and power ranges were 0-2000 lux, -20-60 centigrade, 0-100% and 0-1300 watt respectively. The analog types were 4-20 mA. These ranges were adjusted to the real measuring ranges of equipment.

Fig. 5. Configuration process of analog input addressing

Fig. 6 shows the configuration processes of IP address selection. For this case, the address was 192.168.1.10 and the subnet mask was 255.255.255.0. This address should be unique.

Fig. 6. Configuration process of IP address selection

Fig. 7 shows the programming processes for analog diagram. This figure indicates the design of ladder diagram for four analog inputs. The instruction was used %MW and followed by the address numbers.

Fig. 7. Ladder logic diagram

Fig. 8 shows the programming for running. For running program, it should be login the program, and the IP address would appear.

Fig. 8. Program running

Fig. 9 shows the wireless connection. For this case, the name wireless connection was 'PLC1' and it should be 'connected'.

Fig. 9. Wireless connection

Fig. 10 shows the running program online display, where running in real time. The real numerical numbers would displayed on the laptop screen. The time different between the equipment display and the screen display were in order of milliseconds (ms).

Fig. 10. Running program online display

Table 1 lists the samples for humidity and temperature measurements. There were different values, between on the equipment and monitor display, both for humidity and temperature. Nevertheless, the different values were very small values. The average different value of humidity was only 0.62% and the average different value of temperature was only 0.255°C.

TABLE 1. HUMIDITY AND TEMPERATURE MEASUREMENT RESULTS

тт	Hun	nidity (%)	Temperature (oC)	
Hours	Display	SoMachine	Display	SoMachine
11.12	59.7	59.3	29.7	29.4 29.4 29.3
11.14	59.7	59.3	29.7	29.4
11.16	59.6	59.2	29.6	29.3
11.18	59.6	56.2	29.7	29.4
11.20	59.1	58.7	29.7	29.4
11.22	59.8	59.3	29.6	29.3
11.24	59.1	59.7	29.5	29.2
11.26	59.4	60.0	29.4	29.2
11.28	59.6	60.2	29.4	29.2
11.30	59.7	60.3	29.4	29.2
11.32	59.6	60.3	29.5	29.2
11.34	59.1	59.8	29.5	29.3
11.36	59.6	59.2	29.5	29.2
11.38	59.1	58.9	29.5	29.3
11.40	59.1	58.4	29.5	29.3
11.42	59.6	58.3	29.5	29.2
11.44	59.4	58.1	29.5	29.2
11.46	59.4	58.0	29.4	29.2
11.48	50.2	58.5	29.4	20.2
11.50	58.0	57.7	29.4	29.2

Table 2 lists the samples for lighting measurements. The lighting sensor did not have display on the equipment. Therefore, to make sure on the proper operation, it was tested in the outdoor and indoor locations. Fortunately, the sensor operated well, when conducted the lighting measurement. In outdoor measurements, the results were between 176 and 190 lux, and the measurement results for indoor location were between 87 and 89 lux.

TABLE 2. SAMPLE OF LIGHTING MEASUREMENT

Outdoor	Indoor
190	89
189	88
188	87
187	88
186	87
187	88
186	87
185	88
184	87
183	88
182	89
191	88
189	89
188	88
187	88
186	88
185	88
184	88
183	88
182	87
181	88
180	87
179	88
178	87
177	88
176	87

Table 3 lists the samples for electric power measurements. The meant power was active power, with unit of watt. There are small values of different measurements between SoMachine measurement on the monitor and the display measurement on the equipment. The differences were between 1.2 and 2 watt, or 1.68 watt in average. Thus, it was reasonable as in accurate.

TABLE 3 ELECTRIC POWER MEASUREMENTS

Load power	SoMachine	Current display	Power
(W)	measurement (W)	(A)	display (A)
100	95	0.424	93.3
200	186	0.840	184.8
300	275	1.241	273.0
400	370	1.673	368.1
500	455	2.061	453.4

The transmission speed of wireless was around 0.1 ms. The signal strength was influenced by barriers, such as walls. The maximum distance that could be reached was around 15 m. For vertical transmission, it could be reach only one floor higher level. This simulation of data transmission between devices wirelessly works well. All data packets were sent and received on each device.

IV. CONCLUSION

Based on the results of measurement and analysis of testing in this research activity, it can be concluded that the method used in the simulation of data transmission wirelessly can run well. The average different reading values between the equipment display and the monitor for the humidity and the temperature were only 0.62% and 0.255°C respectively. While, the active power one was only 1.68 watt in average. The signal strength was influenced by barriers.

ACKNOWLEDGMENT

We would like to express the deepest appreciation to The Ministry of Research Technology and Higher Education and The Institute for Research and Community Service, Institut Teknologi Nasional (Itenas) Bandung, which have supported the funding in the research.

REFERENCES

- [1] Achmad Marzuki dan Rusman, Audit Energi pada Bangunan Gedung Direksi PT. Perkebunan Nusantara XIII (Persero), Vokasi Volume 8, Nomor 3, Oktober 2012, ISSN 1693 – 9085, pp. 184 – 196.
- [2] Samsung, Smart Building Solution, Samsung Techwin Co., Ltd, Korea.
- [3] A.H. Buckman M. Mayfield Stephen B.M. Beck, (2014),"What is a Smart Building?", Smart and Sustainable Built Environment, Vol. 3 Iss 2 pp. 92 109.
- [4] James Sinopoli, SmartBuilding Systems for Architects, Owners, and Builders, Elsevier, 2010.

AUTHORS INDEX

A				
A. B. A. Ghani	TS1-7	TS9-6		
A. Rodrigo Mor	TS16-2			
A.M. Ishak	TS5-5			
A.P. Purnomoadi	TS16-2			
Abdul Syakur	TS15-1			
Abi Munajad	TS9-2	TS13-2		
Abrar Hakim	TS5-2			
Adi Purwanto	TS2-3	TS6-4		
Adiyatma G. Pratama	TS15-5			
Adrianti	TS8-2			
Agus Purwadi	TS10-7			
Ahmad Adhiim Muthahhari	TS16-1			
Ahmad Murdani	TS6-4			
Ahmad Zuhairi	TS15-4			
Akihiko Itose	TS1-3			
Alyssa Diva Mustika	TS8-6			
Andi Junaidi	TS10-8			
Andre Widura	TS12-3			
Andrea Cavallini	TS13-5			
Andri Setiyoso	TS10-7			
Angga Aprilian	TS4-3			
Anna Dwita Paulus Sudin	TS7-2	TS3-3		
Annastasya Bastian	TS3-5	TS3-7		
Ariadi Hazmi	TS5-3	TS14-4	TS10-1	
Arief Setyowibowo	TS13-5			
Aris Sunawar	TS4-2			
Aristo Adi Kusuma	TS7-6	TS4-1	TS7-1	
Arnita	TS11-2			
Arry Pribadi	TS2-2	TS2-6	TS2-8	TS6-3
Arsyad Ramadhan D.	TS12-3			
Arwindra Rizqiawan	TS8-8	TS12-1		
Ary P. Nurmansah	TS14-5			
Asep Dadan Hermawan	TS6-3			
Ashok Kumar L.	TS2-1			
Atmonobudi Soebagio	TS12-8			
Aulia Rahman	TS8-2			
Azzahraninna Tryollinna	TS3-7	TS3-5	TS7-2	
В				
B. T. Phung	TS5-1	TS13-3	TS12-2	
B.W. Lee	TS2-7			
B.Z. Bardani	TS16-7			
Bambang Anggoro	TS4-3	TS14-2		
Brigitta Wendha	TS4-7			
Burhanuddin Halimi	TS4-3			
Buyung Sofiarto Munir	TS4-1	TS7-1	TS7-6	
C				
Cahayahati	TS11-2			
•				

Cahyo Subroto	TS13-2	TS9-2	
Chairul Gagarin Irianto	TS15-7		
Chairul Hudaya	TS4-2		
Chao-Yuan Lai	TS12-4		
Chia-Cheng Cao	TS12-4		
Chih-Wen Liu	TS12-4		
Cosa Pamungkas Prabaswara	TS3-7	TS3-8	
D			
D Ishak	TS9-6	TS1-7	
Dahaman Ishak	TS15-4		
Dahlia Deka Permata	TS7-2		
Dahong Fu	TS14-3		
Daniar Fahmi	TS11-5		
Daniel B. L.	TS13-7		
Dedi Tri Laksono	TS2-8	TS9-7	TS13-6
Deni Tri Laksono	TS2-2		
Deny Hamdani	TS7-7	TS14-7	
Devy Martoni	TS9-5		
Dhany Harmeidy Barus	TS12-7		
Dimas Anton Asfani	TS11-5		
Dini Fauziah	TS13-4	TS1-8	
E			
Eka Putra Waldi	TS5-3		
Eki Farlen	TS9-5		
Eko Yudo Pramono	TS12-7		
Eliathamby Ambikairajah	TS12-2		
Esun Selvam	TS9-1		
F			
Fadjrin Anugrah Utama	TS10-1		
Fajar Ari K.	TS16-5		
Fajli Mustafa	TS7-5	TS5-7	
Fakhrul Risal	TS9-4	-20	
Fandy Marpaung	TS12-8		
Fauzi Abdillah	TS2-8		
Ferdianto Tangdililing	TS6-8		
G	150 0		
Gian Carlo Montanari	TS5-6	TS13-5	
Ginas Alvianingsih	TS4-8	1515 5	
H	15.0		
H. S. Halim	TS1-7	TS9-6	
H. Suematsu	TS9-1	15) 0	
H.V.P. Nguyen	TS13-3		
Hamzah Hilal	TS4-4		
Hanalde Andre	TS5-3		
Hangwei Ji	TS2-4		
Hao Liu	TS14-3		
Haomin Guo	TS2-4		
Hardiles	TS6-6		
Harry Gumilang	TS1-6	TS9-8	TS9-4
Heldi Alfiadi	TS1-8	TS13-4	102-4
Holdi / Miladi	101-0	1013-4	

Hendi Handian R.	TS12-3					
Heri Sutanto	TS15-1					
Hermawan	TS15-1					
Hidayat	TS11-2					
Hikmah Prasetia	TS1-3					
Hucheng Li	TS2-4	TS6-5				
I						
I Gusti Ngurah Satriyadi Hernanda	TS11-5					
I Made Yulistya Negara	TS11-5					
I. Jacob Raglend	TS8-3	TS12-5				
I.N Sukma	TS6-6					
I.N Sukma	TS6-7					
Ibrahim Musa Visa	TS10-2					
Ibrahim Pramudya	TS2-7					
IGN Mahendra	TS2-2	TS2-6	TS2-8	TS6-3	TS6-6	TS6-7
IGN Putra Subawa	TS2-2	TS2-6	TS2-8	TS6-3	TS6-6	TS6-7
Indra Perdana	TS5-8					
Indra Surya Dinata	TS6-3	TS6-6	TS6-7			
Indri Suryawati	TS4-6					
Innik Kusmarini	TS2-3					
Ira Mardya Sari	TS7-2					
Irwan Inayaturohman	TS14-7					
Ishak Kasim	TS10-4					
Ivan Taufik	TS3-3	TS3-5				
Iwa Garniwa	TS4-2	TS4-8	TS6-1			
J						
J. Belwin Edward	TS8-3	TS11-1				
J. Gowri Shankar	TS8-3					
J.J. Smit	TS16-2					
Ja Yoon Koo	TS2-7					
Jean Pierre Uwiringiyimana	TS1-5					
Jeremias Leda	TS6-8					
Jezzy Dwi Puspo	TS3-3					
Jian Huang	TS6-5					
Juita Abdul Wahab	TS9-6	TS1-7				
Jumail Soba	TS7-7					
K						
K. Sathish Kumar	TS8-3	TS11-1				
K.Rajalakshmi	TS11-1					
Kartik S. Sharma	TS1-1					
Karunika Diwyacitta	TS1-6	TS9-8				
Khotimatul Fauziah	TS4-4					
Kiasatina Azmi	TS15-4					
Krismanto Eka Widodo Nababan	TS2-6	TS10-6				
Kumari Swati	TS1-1					
Kuo Lung Lian	TS11-3					
L						
Leo Agung	TS9-5					
Levinath Ganesan	TS4-5					
Liang Chen	TS2-4	TS6-5				

Lunnetta Safura	TS16-3			
M				
M. Fairus	TS9-6			
M. H. A. Hamid	TS5-5	TS9-3		
M. Latieful Akbar	TS6-7			
M. M. Ariffin	TS5-5	TS9-3		
M. R. Pahlevi	TS13-7			
M. S. Abd Rahman	TS13-1			
M. Septian Alamsyah Putra	TS2-2			
M. T. Ishak	TS5-5	TS13-1	TS9-3	
M.H.A Hamid	TS1-4			
M.M Arifin	TS1-4			
M.Mariatti	TS1-7	TS9-6		
M.Nazir Abdullah	TS8-5			
M.R. Pahlevi	TS16-7			
M.T Ishak	TS1-4			
Marwah	TS16-5			
Marwan Marwan	TS3-6			
Masahiro Kozako	TS1-3			
Masayuki Hikita	TS1-3			
Maula Sukmawidjaja	TS15-7			
Mhd A. Baiquni	TS15-5			
Mirza Zoni	TS11-2			
Mochammad Erwin Susetyo	TS8-8			
Mochammad Wahyudi	TS11-5			
Mohamad Kamarol	TS1-7	TS9-6	TS15-4	
Mohammed Imran Mousa	TS10-2	15) 0	1015 1	
Mohd Khairunaz Mat Desa	TS4-5			
Monalisa A. Malelak	TS10-3			
Muhammad Abu Bakar Sidik	TS10-3			
Muhammad Hafeez M.H.	TS8-5			
Muhammad Ihsan	TS7-5	TS5-7		
Muhammad Imran Hamid	TS10-1	TS8-2		
Muhammad Irfan Jambak	TS10-1	130-2		
Muhammad Nurdin		TS8-6	TS16-3	
	TS4-7	130-0	1510-5	
Muhammad Sukri Habibi Daulay	TS15-3			
Muhammad Sulthon	TS2-8			
Muhammad Very Nugroho	TS6-1			
Muhammad Wardi Hadi	TS2-7			
Muneaki Ishida	TS8-1			
N	TC12 1			
N. A. M. Amin	TS13-1	TG0 4		
N. Azis	TS5-5	TS9-3		
N. Aziz	TS1-4	TG0 4		
N. I. A. Katim	TS5-5	TS9-3		
N.A.M Amin	TS1-4			
N.I.A Katim	TS1-4			
Naftalin Winanti	TS6-3			
Nanang Hariyanto	TS4-7	TS8-6	TS8-8	TS16-3
Nandang Taryana	TS12-3			

Naoki Yamamura	TS8-1					
Naufal Murda Hagyana	TS15-7					
Naufalarizqa Ramadha Meisa Putra	TS2-6					
Ngapuli I. Sinisuka	TS2-2	TS6-6	TS6-7	TS2-8	TS2-6	TS6-3
NGR Wiadnyana	TS2-2	TS2-8	TS6-3			
Nguyen Thuy Nga	TS8-1					
Nike Sartika	TS6-7					
Ninil Ukhita Anggra Wardani	TS3-8	TS3-1				
Nobuyuki Takagi	TS10-1					
Noor Syazwani Mansor	TS1-7	TS9-6				
Nor Asiah Muhamad	TS10-2					
Norizah Mohamad	TS8-5					
Nur Fitryah	TS10-4					
Nur Widi Priambodo	TS4-1					
0						
Ontoseno Penangsang	TS4-6					
P						
P. Selvam	TS9-1					
P.Ramadhani	TS6-6					
Pekik Argo Dahono	TS12-1					
Prastio	TS16-5					
Prem Ranjan	TS9-1					
Primas Emeraldi	TS5-3	TS10-1	TS14-4			
Purwakanta	TS2-6	TS6-7	TS6-6			
Putu Agus Aditya Pramana	TS7-1	TS4-1	TS7-6			
Q						
Qamaruzzaman	TS12-8					
R. Jayaganthan	TS9-1	TG0 1				
R. Sarathi	TS1-1	TS9-1				
R. Y. Trianto	TS16-7					
R Darkwayati	TC1 0	TC12 4	TC15 (
Rachmawati	TS1-8	TS13-4	TS15-6			
Rahman Azis Prasojo	TS9-8	TS1-6				
Ramaga Nasution	TS12-1					
Ramesh Ananthavijayan Revi Aldrian	TS12-5 TS5-6					
Reynaldi Prasetyo	TS12-6	TS15-6				
Reynaldo Zoro	TS10-3	TS10-6	TS10-8	TS14-1		
Riza Budi Prasetyo	TS4-4	1510-0	1510-6	1514-1		
Rizky Rahmani	TS4-7	TS8-6	TS16-3			
Roni Komar	TS14-1	150-0	1510-5			
Ruihao Song	TS12-2					
S	1512 2					
S. Morsalin	TS5-1	TS13-3				
S. Prabhakar Karthikeyan	TS12-5	1515 5				
S. Razali	TS9-3					
S. Venkatesh	TS11-1					
Sabrina	TS10-4					
Sai Liu	TS6-5					
Saiful Jamaan	TS11-2					

Sandro Agassi Sitompul	TS8-8						
Sarjiya	TS16-1	TS16-4					
Sasongko Pramono Hadi	TS16-1	TS16-4					
Satia Zaputra	TS15-2						
Senna Puger	TS15-5						
Seto Ayom Cahyadi	TS7-7	TS14-7					
Shaga Shaulagara	TS5-7	TS7-5					
Shaohua Wang	TS14-3						
Shengnan Zhao	TS3-2						
Shibo Lu	TS12-2						
Shijin Tian	TS14-3						
Siyuan Lu	TS6-5						
Suharyanto	TS5-4	TS5-8					
Suroso Isnandar	TS16-5						
Suwarno	TS1-3	TS1-6	TS1-8	TS2-7	TS5-6	TS9-2	TS4-6
	TS9-8	TS13-2	TS13-4	TS13-5			
Syafaruddin	TS3-6						
Syafrudin Masri	TS4-5	TS8-5					
Syaifullah Rangga Haryo Nugroho	TS16-4						
Syamsir Abduh	TS10-4						
Syarif Hidayat	TS12-6	TS14-5	TS15-6				
Sylvina Naswil	TS3-1	TS3-8					
T							
T Haryono	TS5-4	TS5-8					
Tedy Juliandhy	TS5-8						
Tharmakulasingam Sirojan	TS12-2						
Tri D. Rachmildha	TS12-1						
Tumiran	TS16-1	TS16-4					
\mathbf{U}							
Umar Khayam	TS1-3	TS1-5	TS5-2	TS5-3	TS9-7	TS13-6	TS15-3
	TS12-6	TS15-6					
Umer Amir Khan	TS2-7						
\mathbf{V}							
V. Indragandhi	TS2-1						
Victor Andrean	TS11-3						
Vishnumoorthy K	TS2-1						
Vu Minh Phap	TS8-1						
\mathbf{W}							
W. F. Praditama	TS13-7						
Waluyo	TS12-3						
Wei Guo	TS2-4						
Wisnu Ananda	TS14-7	TS7-7					
X							
Xiaodong Yuan	TS2-4	TS6-5					
Xuezhong Liu	TS14-3						
Y							
Yang Li	TS3-2						
Yanuarsyah Haroen	TS10-7						
Yenni Tarid	TS2-3						
Yizihe Lang	TS3-2						

Yonggi Puriza	TS14-1
Yuli Astriani	TS4-4
Yuli Rodiah	TS5-4
Z	
Zainuddin Nawawi	TS10-2
Zulkurnain Abdul-Malek	TS10-2

ICH EPS

CERTIFICATE

OF PARTICIPATION

THIS CERTIFICATE IS PROUDLY PRESENTED TO

WALUYO

as

PRESENTER

on the occasion of 2017

International Conference on High Voltage

Engineering and Power Systems

that has been held on October 2-5, 2017
at Inna Grand Bali Beach, Bali, Indonesia

The 72"d National Electricity Day 2017

