ISBN: 978-623-7525-17-2

PROCEEDING International Conference on Green Technology and Design

"A Dissemination platform for supporting green energy, green building, green automation, green transportation and environmental sustainability"

BANDUNG 4 - 5, DECEMBER 2019

BALE DAYANG SUMBI INSTITUT TEKNOLOGI NASIONAL BANDUNG WEST JAVA - INDONESIA

BOOK OF PROCEEDING

INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND DESIGN

Bandung, 4 – 5 December 2019

Bale Dayang Sumbi Institut Teknologi Nasional Bandung West Java - Indonesia

penerbit itenas

ORGANIZING COMMITTEE

INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND DESIGN

GENERAL CHAIR	: Dr. Nurtati Soewarno, Ir., MT.
CO-CHAIR	: Maya R. Musadi, Ir., MT., Ph.D
SECRETARY	: Lisa Kristiana, ST., MT., Ph.D.

: Lisa Kristiana, ST., MT., Ph.D.

FINANCE CHAIR

Dian Duhita, ST., MT. •

EXHIBITS COMMITTEE

- Dr. Didin Agustian Permadi, ST., M.Eng
- Dr. Soni Darmawan, ST., MT. •

PROGRAMME CHAIRS

- Vibianti Dwi Pratiwi, ST., MT.
- Arsyad Ramadhan Darlis, ST., MT.

LOCAL ARRANGEMENT COMMITTEE

• Lita Lidyawati, ST., MT.

PUBLICATIONS CHAIRS

- Agung Prabowo Sulistiawan, ST., MT.
- Ardhiana Muhsin Machdi, ST., MT.

WEB MASTER

- Agus Wardana, S.Sos. •
- Bhakti Herdianto

REVIEWERS:

- Dr. Ir. Imam Aschuri, MT. (Indonesia) ٠
- Dr. Ir. Dewi Kania Sari, MT. (Indonesia) ٠
- Dr. Ir. Kusmaningrum, MT. (Indonesia)
- Dr. Dani Rusirawan, ST., MT. (Indonesia) •
- Emma Akmalah, ST., MT., Ph.D. (Indonesia)
- Dr. Ir. Etih Hartati, MT. (Indonesia)
- Tarsisius Kristyadi, ST., MT., Ph.D. (Indonesia) •
- Prof. Meilinda Nurbanasari, ST., MT., Ph.D. (Indonesia)
- Dr. Jamaludin, S.Sn., M.Sn. (Indonesia) •
- Dr. Ir. Nurtati Soewarno, MT. (Indonesia)
- Dr. Waluyo, ST., MT. (Indonesia) •
- Dr. Ir. Maya Ramadianti, MT. (Indonesia) •
- Taufan Hidjaz, Drs., M.Sn. (Indonesia)
- Dr. Ing. M. Alexin Putra (Indonesia)
- Dr. Andri Masri, M.Sn. (Indonesia)
- Iwan Juwana, ST., M.EM., Ph.D. (Indonesia)

EDITORIAL BOARD:

- Jeark A. Principe Ph.D (Filipine)
- Dr. Ekbordin Winijkul (Thailand)
- Tanakorm Sritarapipat, Ph.D. (Thailand)
- Lisa Kristiana, ST., MT., Ph.D. (Indonesia)
- Arsyad Ramadhan Darlis, ST., MT. (Indonesia)
- Vibianti Dwi Pratiwi, ST., MT (Indonesia)
- Agus Wardana, S.Sos (Indonesia)
- Agus Rianto Amd. (Indonesia)

ISBN:

First Print: December 2019

Publisher:

Penerbit Itenas

Address:

Jl. P.K.H. Mustapha No. 23, Bandung 40124 Telp: +62 22 7272215, Fax: +62 22 7202892 Email: penerbit@itenas.ac.id

2019[©] All rights reserved

It is prohibited to quote and reproduce the contents of this book in any form and manner without permission from the publisher

RUNDOWN ICGTD

Day	Time	Description
Wednesday,	08.00 – 08.30	Registration
December 4 th 2019	08.30 - 09.00	Welcome speech: ICGTD Chair, Rector of Itenas and Opening
	09.00 – 09.45	Plenary Session: "Assessment of Solar PV Power Potential over Asia Pacific Region with Remote Sensing and GIS" Jeark A. Principe, Ph.D (Philipine)
	09.45 – 10.30	Plenary Session: "Emissions and Mitigation Scenarios for Residential Combustion of Solid Fuels in Developing Countries" Dr. Ekbordin Winijkul (Thailand)
	10.30 - 10.45	Coffee Break
	10.45 – 11.30	Plenary Session: "Water Resource Management Framework For West Java Province, Indonesia" Iwan Juwana Ph.D (Indonesia)
	11.30 – 12.30	Ishoma Break
	12.30 – 16.45	Parallel Sessions – as attached
	16.45 – 19.00	Closing

PRESENTATION SCHEDULE

No.	Name	Institution	Paper Topic	Presentation Time	Place
1	Niken Syafitri	Institut Teknologi Nasional Bandung	Green Automation	13.00	
2	Febrian Hadiatna	Institut Teknologi Nasional Bandung	Green Automation	13.15	
3	Florentinus budi setiawan	Soegijapranata catholic university	Green Automation	13.30	
4	Waluyo	Institut Teknologi Nasional Bandung	Green Automation	13.45	
5	Priyo Agus Setiawan	Politeknik Perkapalan Negeri Surabaya	Green Energy	14.00	
6	Lita Lidyawati	Institut Teknologi Nasional Bandung	Green Energy	14.15	
7	Bagus Rizky Pratama Budiajih	Institute Technologi Sepuluh Nopember	Green Energy	14.30	
8	Vibianti Dwi Pratiwi	Institut Teknologi Nasional Bandung	Green Energy	14.45	
9	Rachmad Ramadhan Yogaswara	Universitas Pembangunan Nasional (UPN) "Veteran"	Green Energy	15.00	
10	Lisa Kristiana	Institut Teknologi Nasional Bandung	Green IT	15.15	GSG Bale
11	Achmad Hizazi	Universitas Jambi	Green IT	15.30	Dayang Sumbi Lt 1
12	Dewi Rosmala	Institut Teknologi Nasional Bandung	Green IT	15.45	(A)
13	Diki Ismail Permana	Institut Teknologi Nasional Bandung	Green Energy	16.00	
14	Yusup Miftahuddin	Institut Teknologi Nasional Bandung	Green IT	16.15	
15	Yudi Widiawan	Institut Teknologi Nasional Bandung	Green IT	16.30	
16	Rifqi Finaldy	Institut Teknologi Nasional Bandung	Green IT	16.45	
17	Hafidz Dayu Aditya	Institut Teknologi Nasional Bandung	Green IT	17.15	
18	Agus Hermanto	Institut Teknologi Nasional Bandung	Green Energy	17.30	
19	Meilinda Nurbanasari	Institut Teknologi Nasional Bandung	Green Energy	17.45	
20	Alfan Ekajati Latief	Institut Teknologi Nasional Bandung	Green Energy	18.00	
21	Lakshmanan Gurusamy	Universiti Malaysia Sarawak (UNIMAS)	Green IT	18.15	

No.	Name	Institution	Paper Topic	Presentation Time	Place
22	Abu Arif Jalaluddin	Universiti Malaysia Sarawak (UNIMAS)	Green IT	18.30	
23	Yanuar Z. Arief	Universiti Malaysia Sarawak (UNIMAS)	Green IT	18.45	
24	Nur Laela Latifah	Institut Teknologi Nasional Bandung	Green Building	13.00	
25	Riny Yolandha Parapat	Technische Universität Berlin (TU-Berlin), Berlin, Germany	Green Transportation	13.15	
26	Erwin Yuniar Rahadian	Institut Teknologi Nasional Bandung	Green Building	13.30	
27	Ardhiana Muhsin Machdi	Institut Teknologi Nasional Bandung	Green Building	13.45	
28	Tiara Anantika	Institut Teknologi Nasional Bandung	Green Building	14.00	
29	Wahyudi	Institut Teknologi Nasional Bandung	Green Building	14.15	
30	Dwi Prasetyanto	Institut Teknologi Nasional Bandung	Green Transportation	14.30	Dayang Sumbi
31	Fred Soritua Rudiyanto Manurung	Institut Teknologi Bandung	Green Transportation	14.45	2 B
32	Tarsisius Kristyadi	Institut Teknologi Nasional Bandung	Green Transportation	15.00	
33	Tarsisius Kristyadi	Institut Teknologi Nasional Bandung	Green Transportation	15.15	
34	Reza Phalevi	Institut Teknologi Nasional Bandung	Green Building	15.30	
35	Hendro Prasetiyo	Institut Teknologi Nasional Bandung	Green Building	15.45	
36	Ratna Agustina	Institut Teknologi Nasional Bandung	Green Transportation	16.00	

37	Jatmiko Wahyudi	Regional Development Planning Agency	Suistanability Environment	13.00	
38	Desti Santi Pratiwi	Institut Teknologi Nasional Bandung	Suistanability Environment	13.15	GSG Bale
39	Nguyen Thi Kim Oanh	Asian Institute of Technology (AIT)	Suistanability Environment	13.30	Dayang Sumbi Lt 1
40	Agung Pramudya Wijaya	Institut Teknologi Nasional Bandung	Suistanability Environment	13.45	(B)
41	Edi Wahyu Wibowo	Politeknik LP3I Jakarta	Suistanability Environment	14.00	

No.	Name	Institution	Paper Topic	Presentation Time	Place
42	Taufan Hidjaz	Institut Teknologi Nasional Bandung	Suistanability Environment	14.15	
43	Elvira Rizqita Utami	Institut Teknologi Nasional Bandung	Suistanability Environment	14.30	
44	Farah Fauzia Raihana	Institut Teknologi Nasional Bandung	Suistanability Environment	14.45	
45	Byna Kameswara	Institut Teknologi Nasional Bandung	Suistanability Environment	15.00	
46	Ajeng Alya Hidrijanti	Institut Teknologi Nasional Bandung	Suistanability Environment	15.15	
47	Fenty Wastika Sari	Institut Teknologi Nasional Bandung	Suistanability Environment	15.30	
48	Yudi Adi Pratama	Institut Teknologi Nasional Bandung	Suistanability Environment	15.45	
49	Jono Suhartono	Institut Teknologi Nasional Bandung	Suistanability Environment	16.00	
50	Iredo Bettie Puspita	Institut Teknologi Nasional Bandung	Suistanability Environment	16.15	
51	Ronny Kurniawan	Institut Teknologi Nasional Bandung	Suistanability Environment	16.30	
52	Yulianti Pratama	Institut Teknologi Nasional Bandung	Suistanability Environment	16.45	
53	Maya Ramadianti Musadi	Institut Teknologi Nasional Bandung	Suistanability Environment	17.00	
54	Maya Ramadianti Musadi	Institut Teknologi Nasional Bandung	Suistanability Environment	17.00	
55	Soni Darmawan	Institut Teknologi Nasional Bandung	Suistanability Environment	17.15	
56	Soni Darmawan	Institut Teknologi Nasional Bandung	Suistanability Environment	17.30	
57	Rika Hernawati	Institut Teknologi Nasional Bandung	Suistanability Environment	17.45	
58	Ida Wati	Institut Teknologi Nasional Bandung	Suistanability Environment	18.00	
59	Caecilia Sri Wahyuning	Institut Teknologi Nasional Bandung	Suistanability Environment	18.15	
60	Fifi Herni Mustofa	Institut Teknologi Nasional Bandung	Suistanability Environment	18.30	
61	Enni Lindia Mayona	Institut Teknologi Nasional Bandung	Suistanability Environment	18.45	
62	Maharani Dian Permanasari, M. Ds., PhD.	Institut Teknologi Nasional Bandung	Green Design	13.00	GSG Bale Dayang

No.	Name	Institution	Paper Topic	Presentation Time	Place
63	Ibrahim Hermawan	Institut Teknologi Nasional Bandung	Green Design	13.15	Sumbi Lt 2 A
64	Maugina Rizki Havier	Institut Teknologi Nasional Bandung	Green Design	13.30	
65	Dwi Novirani	Institut Teknologi Nasional Bandung	Green Design	13.45	
66	Mohamad Arif Waskito	Institut Teknologi Nasional Bandung	Green Design	14.00	
67	Edi Setiadi Putra	Institut Teknologi Nasional Bandung	Green Design	14.15	
68	Sulistyo Setiawan	Institut Teknologi Nasional Bandung	Green Design	14.30	
69	Edwin Widia	Institut Teknologi Nasional Bandung	Green Design	14.45	
70	Agung Pramudya Wijaya	Institut Teknologi Nasional Bandung	Green Design	15.00	
71	Gita Permata Liansari	Institut Teknologi Nasional Bandung	Green Design	15.15	
72	M. Djalu Djatmiko	Institut Teknologi Nasional Bandung	Green Design	15.30	
73	Detty Fitriany	Institut Teknologi Nasional Bandung	Green Design	15.45	
74	Andri Masri	Institut Teknologi Nasional Bandung	Green Design	16.00	
75	Aditya Januarsa	Institut Teknologi Nasional Bandung	Green Design	16.15	
76	Bambang Arief Ruby,	Institut Teknologi Nasional Bandung	Green Design	16.30	

FOREWARD

Welcome to the 1st International Conference on Green Technology and Design. This conference takes place in Bandung, 4th December 2019 and become our first international conference in green technology and design.

It is our responsibility to contribute in the national development and sustainability, the Institut Teknologi Nasional (Itenas) Bandung through its Lembaga Penelitian dan Pengabdian kepada

Masyarakat (LP2M) conducts this conference and draws upon the expertise of wide range of knowledge.

The ICGTD 2019 conference aims to promote research in the field of Green Energy, Green Building Green Automation, Green Transportation, Sustainability Environment, Green IT and Green Design, and to facilitate the exchange of new ideas in these fields among academicians, engineers, junior and senior researchers, scientists and practitioners. It also includes the plenary, keynote and invited speakers.

On behalf of Organizing Committee, it is a great pleasure to welcome you in Itenas Bandung and look forward to meeting you at ICGTD2019.

Warm regards,

Chair Dr. Ir. Nurtati Soewarno M.T.

TABLE OF CONTENT

ORGANIZING COMMITTEE	i
RUNDOWN ICGTD	iii
PRESENTATION SCHEDULE	iv
FOREWARD	ix
TABLE OF CONTENT	x

Green Automation

1.	Multimode Ultrasound Cleaner Design for Green Extraction Food Processing [Florentinus Budi Setiawan, Probo Y. Nugrahedi]	1
2.	Development of Digital Simulation of Intelligent Electronic Devices Operation Platform for Digital Substation: An Overview	ng
	[Lakshmanan Gurusamy, Yanuar Z. Arief, Mohd Hafiez Izzwan Saad]	5
3.	IoT Thingspeak for Miniature Smart Grid Monitoring System	
	[Waluyo, Charly Maulana Khafi, Febrian Hadiatna, Andre Widura]	11

Green Energy

4.	Performance Analysis of comparison the conventional and Myring blade for $n = 1$ on the Savonius Current Turbine By Using CFD Approach				
	[Priyo Agus Setiawan, Nopem Ariwiyono, Rini Indarti]	16			
5.	Video Communication System Using LASER				
	[Lita Lidyawati, Lucia Jambola, Arsyad Ramadhan Darlis]	. 20			

Green IT

6.	Lexicon-Based Sentiment Analysis For Analyzing Situational Variables [Dewi Rosmala, Hafidz Dayu Aditya]	24
7.	Implementation of Template Matching Correlation Method in the Conversio	n
	System of Ancient Greek Letter Image into Modern Latin Letters	
	[Rifqi Finaldy, Jasman Pardede, Irma Amelia]	29

Green Transportation

8.	Production of Nano Asphalt Emulsion from Asbuton with Microemulsion Me	hod
	[Riny Yolandha Parapat, Imam Aschuri, Reinhard Schomäcker]	39

9.	Prioritization of Road Accident Factors in Indonesia Using Combination of Delphi Method and Analytical Hierarchy Process [Dwi Prasetyanto, Andrean Maulana]	45
10.	Rural Vehicle for Agricultural Community Function in information Society H [Fred Soritua Rudiyanto Manurung, Agus Sachari, Setiawan Sabana]	2ra 50
11.	Analysis of Stress Against Airflow on Electric Car Bodies [Tarsisius Kristiyadi, Alfian Eric Oktavianto, Fery Hidayat]	55

Suistanability Environment

Health Examinaton Facility Design Mobile For Elderly [Hendro Prassetiyo, Arditya Ash Shidiq, Arie Desrianty, Lauditta Irianti]	64
Numerical Model on 3D Finite Element Method on Slope Stability with Tyre System in Road Slopes Reinforcement, West Papua	Wall
[Indra Noer Hamdhan, Desti Santi Pratiwi, Acep Reno Juniandri]	69
Regional simulation of surface ozone over Southeast Asia [Nguyen Thi Kim Oanh, Didin Agustian Permadi]	75
Cymbalum Musical Instrument Design by Using Wasted Cans as Main Materi [Agung Pramudya Wijaya]	al 78
Mapping the Potential of Green Economic Development Jakarta City Based of Green GRDP	n
[Edi Wahyu Wibowo]	81
The Symbolic Meaning of Mosque Architecture and Interior as Adaptation to Residential Environment, in the Social, Economic and Cultural Contexts in Lombok [Taufan Hidjaz, Nurtati Soewarno, Detty Fitriany]	the 86
Study Program Levels of Community Participation in Waste Management of Waste Bank Programs in Tani Mulya and Langensari Villages Bandung Barat District	100
[Adi Yudi Pratama, Iwan Juana]	102
A Study of Using Membranes Carbon Nanotubes Integrating with Ozone for Reducing Natural Organic Matter (NOM) Jatiluhur Dam	
[Jono Suhartono, Arnia Shintha, Imat Nur Alim]	108
Study of Several Natural Adsorbents Performance in Ethanol Purification through Distillation Process - Continuous Dehydration	
[Ronny Kurniawan, Yulianty Pratama, F.N. Hidayah, D. Asriyanti, Salafudin]	114
Tubular Celulotic biofilm production in double Chamber Reactor [Yulianty Pratama, Amira Zakia Lutfi, Salafudin]	120
	Health Examinaton Facility Design Mobile For Elderly [Hendro Prassetiyo, Arditya Ash Shidiq, Arie Desrianty, Lauditta Irianti] Numerical Model on 3D Finite Element Method on Slope Stability with Tyre Y System in Road Slopes Reinforcement, West Papua [Indra Noer Hamdhan, Desti Santi Pratiwi, Acep Reno Juniandri] Regional simulation of surface ozone over Southeast Asia [Nguyen Thi Kim Oanh, Didin Agustian Permadi] Cymbalum Musical Instrument Design by Using Wasted Cans as Main Materi [Agung Pramudya Wijaya] Mapping the Potential of Green Economic Development Jakarta City Based of Green GRDP [Edi Wahyu Wibowo] The Symbolic Meaning of Mosque Architecture and Interior as Adaptation to Residential Environment, in the Social, Economic and Cultural Contexts in Lombok [Taufan Hidjaz, Nurtati Soewarno, Detty Fitriany] Study Program Levels of Community Participation in Waste Management of Waste Bank Programs in Tani Mulya and Langensari Villages Bandung Barat District [Adi Yudi Pratama, Iwan Juana] Jono Suhartono, Arnia Shintha, Imat Nur Alim] Study of Several Natural Adsorbents Performance in Ethanol Purification through Distillation Process - Continuous Dehydration [Ronny Kurniawan, Yulianty Pratama, F.N. Hidayah, D. Asriy

22.	Investigation of PM10 Based On Landsat 8 Over Urban Area And Correlated V Ground Measurement	Vith
	[Rika Hernawati, Soni Darnawan]	124
23.	Human Error Contributions to Potential Incident in Laboratories at Institut Teknologi Nasional	
	[Caecilia Sri Wahyuning]	128
24.	Mathematical Modeling of Green Capacitated P-Centre Problem using Mixed	
	Integer Linear Programming	
	[Fifi Herni MUSTOFA, Yoanita Y. Mukti, Arief Irfan Syah Tjaja]	132
25.	Accuracy Analysis of Aerial Photography Using PhotoModeler UAS and Agisof	ť
	[Soni Darnawan, Rino Erviana, Anggun Tridawati]	136
26.	Estimation of Mangrove Biomass Parameters Using Aerial Photography [Soni Darnawan, B. Heriyanto Aditya Gunawan, Anggun Tridawati]	139

Green Design

27.	Eco-Design Packaging for Sustainable Farming Products [Maharani Dian Permanasari]	144
28.	Application of Design and Development of Pine Waste (Cone) Pine for Construction Materials Interior Building and Furniture [Ibrahim Hermawan]	146
29.	Utilization Of Corkwood Fabric In The Making Of "Corkseat" With Surface Mimicry Concept [Maugina Rizki Havier]	153
30.	Initial Design of Cisumdawu Toll Rest Area [Dwi Novirani, Arief Irfansyah Tjaja, Dida Firdaus]	156
31.	Parchment Skin: Alternative Materials for Manufacturing Environmentally Friendly Products [Mohamad Arif Waskito]	160
32.	The Souvenir of Bebegig Sukamantri for Tourism Development in West Java [Edi Setiadi Putra]	166
33.	The Learning Medium Design of Creative Literacy for 4-6 Years Old Kids Base on Used Oil Bottle Exploration [Sulistyo Setiawan]	d 171
34.	Optimizing learning facility on Interior Design Basic level Education [Edwin Widia]	175

35. D	Design of Train	Passenger Sea	t Economic	Class using	House of	Ergonomic	(HoE)
-------	-----------------	----------------------	------------	--------------------	----------	-----------	-------

	[Gita Permata Liansari, Arie Desrianty, M. Irfan Nurmawan]	182
36.	Developing Web Based Employee Saving and Loan Cooperative's Sistem Information	
	[Achmad Hizazi, Salman Jumaili]	187
37.	K-Means Algorithm for Monitoring The Existence Of Student In Class	
	[Yusup Miftahuddin, Irma Amelia Dewi, Asril Arbani Hamka]	195

Analysis Of Stress Against Airflow On Electric Car Bodies

Tarsisius Kristiyadi

Alfian Eric Oktavianto

Fery Hidayat

Mechanical Engineering, Institut Teknologi Nasional Bandung

Mechanical Engineering, Institut Teknologi Nasional Bandung Mechanical Engineering, Institut Teknologi Nasional Bandung

Abstract-A concept vehicle body design four wheels with advanced aesthetic aesthetic, futuristic and aerodynamic is quite good. Evhero one of the crossover type of electric vehicles that successfully designed and realized by the National Institute of Technology Bandung. To know the behavior of Evhero electric car body plate as a whole which includes stress, deflection, and safety factor with the vehicle speed range 30, 60, and 100 km / h then in this research conducted stress analysis using SOLIDWORKS software. At a speed of 30 km / h vehicle, the shear stress is 0.04 Pa, deflection (-y) 0.1218 mm & (-z) 0,002469 mm, and safety factor 22,81. At 60 km / h speed, shear stress was 0.17 Pa, deflection (-y) 0,1219 mm & (z) 0,009806 mm, and safety factor 13,67. And at the speed of the vehicle 100 km / hour, obtained shear stress of 0.44 Pa, deflection 0.1298 mm & (-z) 0.02714 mm, and safety factor of 6.817.

Keywords—*body*, *stress*, *deflection*, *safety factor*

I. INTRODUCTION (*HEADING 1*)

In tune with the development of the times and the increasing need for high mobility, people are the right reasons to develop inventions in the field of transportation that is more reliable, both in terms of security, efficiency, and ease without overestimating the comfort in use. Vehicles as the most effective means of transportation today are required to have the characteristics of selling nilal a reliable, strong tough, and included in the design in order to attract consumers.

Evhero is a crossover type electric car that successfully designed and realized by the National Institute of Technology Bandung. An electric car is a car that uses the driving force in the form of electric motors where electrical energy can be stored in batteries. To find out the strength of evhero electric car body then in this research conducted stress analysis on the electric car body to the airflow.

II. RESEARCH METHOD

Step simulation of evhero electric car body voltage through several stages. The simulation method can be seen in the picture flow diagram 1.

Fig 1. Flow Chart Simulation Analysis Electrical Car Body

III. RESULT AND DISCUSSION

After running on the geometry of electric car body plate evhero to the airflow the following results are obtained

a. Speed 30 Km/Hour

In the analysis of electric car body plate capacity evhero with a speed of 30 km / h due to airflow get the following results:

Fig 2. Velocity Air Flow View Speed 30 Km/Hour

Figure 2 shows the speed distribution. Speed is indicated by the color scale, where the red color indicates a high air velocity of 44 km / h, while the blue color indicates a low air velocity of 0 km / h. From this speed distribution can be seen to accelerate the air gradually until it reaches the maximum above the car. This shows that the shape of the front car is quite aerodynamic.

Fig 3. Surface Pressure of The Car Body at a Speed of 30 $\rm km$ / hour

Dynamic pressure	: 39,11 Pa
Drag force	: 38,30267 N
Shear stress	: 0,04 Pa
Coefficient drag	: 0,574

At a speed of 30 Km / hour obtained degradation of color pressure on the surface of the electric car evhero produced in Figure 3. Clear visible color degradation caused by exposure to air body surface electric car evhero. Especially on the front looks a striking color that is red. This means that the section has a great pressure. This is because the front of the car first hit and split the air when the car drove.

Also visible on the front of the car there is a blue color means that the section has a low pressure. That is because there is a deflector on the front, which serves to channel the air that hit the front of the vehicle first and make the air flow is directed out, resulting in air split and formed a zone of low flow.

At the beginning of the air hit the flow deflector behind him also obstructed, that's why the rising pressure is marked with orange color. Indeed initially the pressure rises, but after some distance down the pressure seen from the degradation of orange-yellow-green-brightgreen-turquoise to blue. Similarly, on the air that hit the windshield.

On the side of the car there is also a little blue color toska and green which means there is pressure caused by the air that hit the surface of the contour of the car. Because basically when the vehicle drove the air that hit will form a layer beside

The shear stress is formed on the moving fluid due to the fluid viscosity. The maximum shear stress in the evhero electric car body is 0.04 Pa with an average number indicating the magnitude of the fluid resistance of 0.575. The resulting shear stress is small because we know that the usual fluids such as air and water have very small viscosities and are therefore reasonable if the resulting shear stress is small.

b. Speed 60 Km/Hour

In the analysis of electric car body plate capacity evhero with a speed of 60 km / h due to airflow get the following results:

Fig 4. Velocity Air Flow View Speed 60 Km/Hour

Figure 4 shows the speed distribution for speeds of 60 km / h. As well as at a speed of 30 km / h, there is acceleration from the air gradually on the top side of the car. Speed is indicated by the color scale, where the red color indicates a high airspeed of 85 km / h, while the blue color indicates a low air velocity of 0 km / h.

Fig 5. Surface Pressure of The Car Body at a Speed of 60 km / hour

Dynamic pressure	: 156,52 Pa
Drag force	: 152,95094 N
Shear stress	: 0,17 Pa
Coefficient drag	: 0,5733367

At a speed of 60 Km / hour obtained degradation of color pressure on the surface of the electric car evhero produced in Figure 5. Clear visible color degradation caused by exposure to air body surface electric car evhero. Especially on the front looks a striking color that is red. This means that the section has a great pressure. This is because the front of the car first hit and split the air when the car drove.

Also visible on the front of the car there is a blue color means that the section has a low pressure. That is because there is a deflector on the front, which serves to channel the air that hit the front of the vehicle first and make the air flow is directed out, resulting in air split and formed a zone of low flow.

At the beginning of the air hit the flow deflector behind him also obstructed, that's why the rising pressure is marked with orange color. Indeed initially the pressure rises, but after some distance down the pressure seen from the degradation of orange-yellow-green-brightgreen-turquoise to blue. Similarly, on the air that hit the windshield.

On the side of the car there is also a little blue color toska and green which means there is pressure caused by the air that hit the surface of the contour of the car. Because basically when the vehicle drove the air that hit will form a layer beside

The shear stress is formed on the moving fluid due to the fluid viscosity. The maximum shear stress in the evhero electric car body is 0.17 Pa with an average number indicating the magnitude of the fluid resistance of 0,5733367. The resulting shear stress is small because we know that the usual fluids such as air and water have very small viscosities and are therefore reasonable if the resulting shear stress is small.

c. Speed 100 Km/Jam

In the analysis of electric car body plate capacity evhero with a speed of 100 km / h due to airflow get the following results:

Fig 6. Velocity Air Flow View Speed 100 Km/Hour

Figure 6 shows the speed distribution for speeds of 100 km / h. Compared to previous speeds the acceleration of air that occurs in the front of the car faster and also the maximum speed reaches 143 km / h, higher than previous speeds.

Fig 7. Surface Pressure of The Car Body at a Speed of 100 km / hour

Dynamic pressure	: 434,69 Pa
Drag force	: 424,34944 N
Shear stress	: 0,45 Pa
Coefficient drag	: 0,5727801

At a speed of 100 Km / hour obtained degradation of color pressure on the surface of the electric car evhero produced in Figure 7. Clear visible color degradation caused by exposure to air body surface electric car evhero. Especially on the front looks a striking color that is red. This means that the section has a great pressure. This is because the front of the car first hit and split the air when the car drove.

Also visible on the front of the car there is a blue color means that the section has a low pressure. That is because there is a deflector on the front, which serves to channel the air that hit the front of the vehicle first and make the air flow is directed out, resulting in air split and formed a zone of low flow. At the beginning of the air hit the flow deflector behind him also obstructed, that's why the rising pressure is marked with orange color. Indeed initially the pressure rises, but after some distance down the pressure seen from the degradation of orange-yellow-green-brightgreen-turquoise to blue. Similarly, on the air that hit the windshield.

On the side of the car there is also a little blue color toska and green which means there is pressure caused by the air that hit the surface of the contour of the car. Because basically when the vehicle drove the air that hit will form a layer beside

The shear stress is formed on the moving fluid due to the fluid viscosity. The maximum shear stress in the evhero electric car body is 0.45 Pa with an average number indicating the magnitude of the fluid resistance of 0,5727801. The resulting shear stress is small because we know that the usual fluids such as air and water have very small viscosities and are therefore reasonable if the resulting shear stress is small.

After done running on geometry plate electric car body evhero to static load got result as follows:

Speed 30 Km/Hour

In the analysis of deflection and safety factor of electric car body plate evhero with speed 30 km / h due to static load get result as follows:

Fig 8. Deflection (1:1) and Safety Factor Speed 30 Km/Hour

Deflection : (-y) 0,1218 mm & (-z) 0,002469 mm

Safety Factor : 22,81

Due to the drag on the body of the car when the speed of 30 km / h against the exposure to air flow and gravity forces cause the car body to change shape, especially on the roof

and front of the car. Can be seen clearly in Figure 8 on a 1: 1 scale where there is color degradation. The shape change on the styled car body plate in this case is curved. The curved portion of the car body plate is the red colored area of 0.1218 mm in the direction of growth -y, this is because there is a force of gravity and 0.002469 mm toward the -z axis caused by exposure to air.

The minimum safety factor value generated is 22.81 as shown in figure 8. The car body security factor is still categorized as safe. The value of the resulting safatey factor is large enough, because the body structure is designed not only for wind blowing, but also to protect the driver when a collision occurred. So in this case the burden caused by wind blowing would result safety factor it will be safe, because the body will not be damaged by the wind.

• Front

Fig 9. Front Deflection Speed 30 Km/Hour

Figure 9 shows the deflection in the hood of the car caused by gravity of 0.02689 mm in the direction of the axis -y. On the side participate is deflected due to the deflection that occurs on the hood of the car, so that on the side involved drawn toward the -x axis of 0.001118 mm.

• Right Side

Fig 10. Right Side Deflection Speed 30 Km/Hour

On the right side of the rearview mirror is de-flexed towards the -z axis of 0.004057 mm caused by exposure to air.

Left Side

Fig 11. Left Side Deflection Speed 30 Km/Hour

Similarly, the right side, on the left side of the rearview mirror is de-flexed toward the -z axis of 0.004057 mm.

• Top

Fig 12. Top Deflection Speed 30 Km/Hour

At the top of the side side shown by the arrows are participated due to deflection occurring in the center of the roof of the car caused by the force of gravity. So on the side of the side come interested in the axis -x of 0.02290 mm. And on the front is oddly deflected by 0.03212 mm toward the -z axis

The same is seen in the top view. At the top, the side side indicated by the arrows is participated due to the deflection occurring on the roof of the car caused by 0.02290 mm toward the x axis

d. Speed 60 Km/Hour

In the analysis of deflection and safety factor of electric car body plate evhero with speed 60 km / h due to static load get result as follows:

Fig 14. Deflection (1:1) and Safety Factor Speed 60 Km/Hour

Deflection : (-y) 0,1219 mm dan (-z) 0,009806 mm

Safety Factor: 13,67

As a result of the drag on the surface of the car body against exposure to airflow and gravity forces cause the car body to change shape, especially on the roof and front of the car. Can be seen clearly in Figure 14 with a 1: 1 scale of comparison where there is color degradation. The shape change on the styled car body plate in this case is curved. The curved portion of the car body plate is the red colored area of 0.1219 mm in the direction of growth -y, this is due to the presence of gravity and 0.009806 mm in the direction of the -z axis caused by exposure to air.

The value of the minimum security factor generated is 13.67 as shown in figure 14. The car body security factor is still categorized as safe to use. The value of the resulting safatey factor is quite large, because the body structure is designed not only for wind exposure, but also serves to protect the driver during a collision. So in this case the burden caused by wind blow must be the result of his safety factor will be great, because the body will not be damaged by the wind. • Front

Fig 15. Front Deflection Speed 60 Km/Jam

Figure 15 shows the deflection in the hood of the car caused by gravity of 0.06753 mm in the direction of the axis -y. On the side participate is deflected due to the deflection that occurs on the hood of the car, so that on the side involved drawn toward the -x axis of 0.001534 mm.

Right Side

Fig 16. Right Side Deflection Speed 60 Km/Hour

On the right side of the rearview mirror is de-flexed towards the -z axis of 0.004838 mm caused by exposure to air.

Left Side

Fig 17. Right Side Speed Deflection 60 Km/Hour

Similarly, the right side, on the left side of the rearview mirror is de-flexed toward the -z axis of 0.004838 mm.

Fig 18. Top Deflection 60 Km/Hour

At the top of the side side shown by the arrows are participated due to deflection occurring in the center of the roof of the car caused by the force of gravity. So on the side of the side come interested in the axis -x of 0.02689 mm. And on the front is oddly deflected by 0.03721 mm toward the -z axis.

• Rear

Fig 19. Rear Deflection Speed 60 Km/Jam

The same is seen in the top view. At the top, the side side indicated by the arrows is participated due to the deflection occurring on the roof of the car caused by 0.02689 mm toward the x axis.

e. Speed 100 Km/Hour

In the analysis of deflection and safety factor of electric car body plate evhero with speed 100 km / h due to static load get result as follows:

Fig 20. Deflection (1:1) and Safety Factor Speed 100 Km/Hour

Deflection : (-y) 0,1298 mm dan (-z) 0,02714 mm Safety Factor : 6,817

As a result of the drag on the surface of the car body against exposure to airflow and gravity forces cause the car body to change shape, especially on the roof and front of the car. Can be seen in figure 20 with a 1: 1 comparison scale where there is color degradation. The shape change on the styled car body plate in this case is curved. The curved portion of the car body plate is the red colored area of 0.1298 mm in the direction of growth -y, this is due to the force of gravity and 0.02714 mm toward the -z axis caused by the exposure to air.

With the shear stress that occurs in the body of electric cars evhero car body safety factor is still categorized as safe to use. The value of the minimum safety factor generated amounted to 6.817 as shown in Figure 20. The value of the resulting safety factor is large enough, because the body structure is designed not only for wind exposure, but also serves to protect the driver in the event of a collision. So in this case the burden caused by wind blow must be the result of his safety factor will be great, because the body will not be damaged by the wind.

Fig 21. Front Deflection Speed 100 Km/Hour

Figure 21 shows the deflection in the hood of the car caused by gravity of 0.08109 mm in the direction of the axis -y. On the side participate is deflected due to the deflection that occurs on the hood of the car, so that on the side involved drawn toward the -x axis of 0.00216 mm.

Right Side

Fig 22. Right Side Deflection Speed 100 Km/Hour

On the right side of the rearview mirror is de-flexed towards the -z axis of 0.01479 mm caused by exposure to air.

Left Side

Fig 23. Left Side Deflection Speed 100 Km/Hour

Similarly, the right side, on the left side of the rearview mirror is de-flexed toward the -z axis of 0.01479 mm.

Fig 24. Top Deflection Speed 100 Km/Jam

At the top of the side side shown by the arrows are participated due to deflection occurring in the center of the roof of the car caused by the force of gravity. So on the side of the side come interested in the axis -x of 0.04231 mm. And on the front is oddly deflected by 0.03213 mm toward the -z axis.

Figure 25. Rear Deflection Speed 100 Km/Jam

The same is seen in the top view. At the top, the side side indicated by the arrows is participated due to the deflection occurring on the roof of the car caused by 0.03213 mm toward the x axis.

f. Overall Results

Based on simulation results conducted at several speeds that are 30, 60, and 100 km/h can be reported as follows:

TABLE 1. Results of Evhero Electric Car Evolution Car Plate Recap

	Shear Stress (Pa)	Pressure (Pa)	Coefficient Drag	Deeflection (mm)	Safety Factor
30 Km/Hour	0,04	39,05	0,575	(-y) 0,1218	22,81
60 Km/Hour	0,17	156,28	0, 5733367	(-y) 0,1219	13,67
100 Km/Hour	0,44	434,02	0,5727801	(-y) 0,1298	6,817

Fig 26. Speed of Vehicle Vs Shear Stress

Based on the resulting graphs found that the faster the vehicle the shear stress generated by the higher air exposure.

Fig 27. Speed of Vehicle Vs Pressure

Based on the graph generated it is found that the faster the vehicle the pressure generated by the higher air exposure.

Fig 28. Speed of Vehicle Vs Coefficient Drag

Based on the resulting graph, it is found that the faster the vehicle the drag coefficient generated by the higher air exposure.

Fig 29. Speed of Vehicle Vs Deflection Direction -Z

Based on the resulting graphs it is found that the faster the vehicle then the deflection of the -z direction generated due to the air exposure force is increasing.

Fig 31. Speed of Vehicle Vs Deflection Direction -Y

Based on the resulting graphs it is found that the faster the vehicle the deflection direction -y generated due to the force of air exposure is increasing.

Fig 32. Speed of Vehicle Vs Safety Factor

Based on the resulting graphs found that the faster the vehicle then the safety factor generated due to the voltage that occurs decreases.

IV. CONCLUSION

At a speed of 30 km / h vehicle obtained maximum shear stress that occurs in evhero electric car body of 0.04 Pa and a maximum deflection of 0.1218 mm direction -y and also get a minimum security factor greater than one that is equal to 22.81. So it can be said at a speed of 30 km / h evhero electric car body is safe. At a speed of 60 km / h vehicle obtained maximum shear stress that occurs in evhero electric car body of 0.17 Pa and deformation of 0.1219 mm -y direction and also get a minimum security factor greater than one that is equal to 13.67. So it can be said at a speed of 60 km / h evhero electric car body is safe. At a speed of 100 km / h vehicle obtained maximum shear stress that occurs on the body of evhero electric car of 0.44 Pa and deformation of 0.1298 mm. and also get less than one security factor that is equal to 6,817. So it can be said at a speed of 100 km / h evhero electric car body is safe.

For the front and rear, the most attention is the front. Because the front is part of the car that first split the wind when the car drove in high speed. So to create a balance on the front should be most noticed on the bumper.

REFERENCES

- Arsada, Robbi. 2012. Solidworks Professional. Bandung: Informatika Bandung
- Burhani, K. 2014. Aerodinamika pada Bodi Mobil. http://proyeklebah.blogspot.co.id/2014/10/aerodinamika-pada-bodi-mobil.html dilihat 15 November 2017
- [3] Fauzi, Helmi. 2013. Analisis Tegangan Pada Frame Mobil Listrik Sinisu Menggunakan Metode
- [4] Elemen. Jember: Univ Jember
- [5] Gunadi. 2008. Teknik Bodi Otomotif. Jakarta: Direktorat Pembinaan SMK
- [6] J. Ed Akin. 2009. Finite Element Analysis Concepts via SolidWorks. Rice University, Houston,
- [7] Texas
- [8] J. Ed Akin. 2013. Solidwork Flow Simulation 2012 Tutorial. Rice University, Houston, Texas
- [9] Munson, B. R., Young, D. F., Okiishi, T. H., Mekanika Fluida, terj. Dr. Ir. Harinaldi, Ir.
- [10] Budiarso, M.Eng. (Jakarta: Erlangga, 2003)
- [11] Rahmat. 2011. Perancangan Dan Perhitungan Desain Rangka Dan Bodi. Kudus:Muria
- [12] Rinarta, Ananta. 2012. Evaluasi Dan Perancangan Badan Kendaraan Baru Untuk Kompetisi
- [13] Shell Eco-Marathon. Bandung: ITB
- [14] Popov, E.P. 1981. SI Version Mechanics Of Materials 2nd Edition. Englewood Cliffs: Prentice Hall International, Inc.
- [15] Setyanto, Djoko. 2009. Kaji Teoritik Dan Eksperimental Perlakuan Dinamik Bodi Mobil
- [16] Daihatsu Zebra. Bandung: ITB
- [17] Victor L. Streeter, E. Benjamin Wylie. Mekanika Fluida. terj. Arko Prijono.
- [18] (Jakarta: Erlangga, 1988)
- [19] Vidosic, Joseph. 1957. Machine Design Projects. Michigan: Ronald Press Co
- [20] Yamin, Muhammad. 2001. Analisis Aerodinamika Deflektor Pada Truk Menggunakan
- [21] Software Berbasis Computional Flluid Dynamic (CFD). Jakarta: Gunadarma

