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SJR

The SJR is a size-independent prestige indicator that
ranks journals by their 'average prestige per article'. It is
based on the idea that 'all citations are not created
equal'. SJR is a measure of scientific influence of

journals that accounts for both the number of citations
received by a journal and the importance or prestige of
the journals where such citations come from It

measures the scientific influence of the average article
in a journal it expresses how central to the global

Total Documents

Evolution of the number of published documents. All
types of documents are considered, including citable
and non citable documents.

Year Documents
2002 1654
2003 1967
2004 1696
2005 2352

Citations per document

This indicator counts the number of citations received
by documents from a journal and divides them by the
total number of documents published in that journal.
The chart shows the evolution of the average number of

times documents published in a journal in the past two,
three and four years have been cited in the current year.
The two years line is equivalent to journal impact factor

™ (Thomson Reuters) metric.

Cites per document Year Value
Cites / Doc. (4 years) 2002 0.000
Cites / Doc. (4 years) 2003 0.430
Cites / Doc. (4 years) 2004 0.271
Cites / Doc. (4 years) 2005 0.303
Cites / Doc. (4 years) 2006 0.273
Cites / Doc. (4 years) 2007 0.265
Cites / Doc. (4 years) 2008 0.219
Cites / Doc. (4 years) 2009 0.298
Cites / Doc. (4 years) 2010 0.294
Cites / Doc. (4 years) 2011 0.347

Total Cites  Self-Cites

Evolution of the total number of citations and journal's
self-citations received by a journal's published
documents during the three previous years.
Journal Self-citation is defined as the number of citation

from a journal citing article to articles published by the
same journal.

Cites Year Value
S lf Ci 2002 0

External Cites per Doc  Cites per Doc

Evolution of the number of total citation per document
and external citation per document (i.e. journal self-
citations removed) received by a journal's published
documents during the three previous years. External

citations are calculated by subtracting the number of
self-citations from the total number of citations received
by the journal’s documents.

% International Collaboration

International Collaboration accounts for the articles that
have been produced by researchers from several
countries. The chart shows the ratio of a journal's
documents signed by researchers from more than one

country; that is including more than one country
address.

Year International Collaboration
2002 19 77

Citable documents  Non-citable documents

Not every article in a journal is considered primary
research and therefore "citable", this chart shows the
ratio of a journal's articles including substantial
research (research articles, conference papers and

reviews) in three year windows vs. those documents
other than research articles, reviews and conference
papers.

Cited documents  Uncited documents
Show this widget in your own website
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Ratio of a journal's items, grouped in three years
windows, that have been cited at least once vs. those

not cited during the following year.

Documents Year Value
Uncited documents 2002 0
Uncited documents 2003 1219
Uncited documents 2004 2961
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Melanie Ortiz 5 months ago

Dear Adolfo, thank you very much for your comment. We always suggest you consult the

Scopus database directly. Keep in mind that the SJR is a static image (the update is made

one time per year) of a database (Scopus) which is changing every day.

The Scopus’ update list can also be consulted here:

https://www.elsevier.com/solutions/scopus/how-scopus-works/content

Best Regards, SCImago Team
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Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
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1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman
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control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman

An Energy Balance Model Parameter
Estimation with an Extended Kalman

Filter

Auralius Manurung ∗ Lisa Kristiana ∗∗ Dwi Aryanta ∗∗

∗ Universitas Pertamina, Jakarta, Indonesia (e-mail:
auralius.manurung@ieee.org)

∗∗ Institut Teknologi Nasional Bandung, Bandung, Indonesia (e-mail:
[lisa,dwiaryanta]@itenas.ac.id)

Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
modeling and parameter identification of such a device. The thermal device that we use is
an educational device developed in-house. First, we derive the device’s mathematical model
using a zero-order energy balance model as the template model. Next, we find the model’s best
parameters by performing an optimization process. Finally, we implement an Extended Kalman
Filter technique to accommodate the possibility that those parameters may change over time.
Our experiments show that when we have reliable measurements and a reliable system model,
the Kalman filtering technique can perform well as an online parameter estimator and act as a
basis to build an adaptive model.

Keywords: Recursive identification, process modeling and identification, embedded computer
control systems and applications.

1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman

An Energy Balance Model Parameter
Estimation with an Extended Kalman

Filter

Auralius Manurung ∗ Lisa Kristiana ∗∗ Dwi Aryanta ∗∗

∗ Universitas Pertamina, Jakarta, Indonesia (e-mail:
auralius.manurung@ieee.org)

∗∗ Institut Teknologi Nasional Bandung, Bandung, Indonesia (e-mail:
[lisa,dwiaryanta]@itenas.ac.id)

Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
modeling and parameter identification of such a device. The thermal device that we use is
an educational device developed in-house. First, we derive the device’s mathematical model
using a zero-order energy balance model as the template model. Next, we find the model’s best
parameters by performing an optimization process. Finally, we implement an Extended Kalman
Filter technique to accommodate the possibility that those parameters may change over time.
Our experiments show that when we have reliable measurements and a reliable system model,
the Kalman filtering technique can perform well as an online parameter estimator and act as a
basis to build an adaptive model.

Keywords: Recursive identification, process modeling and identification, embedded computer
control systems and applications.

1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman

An Energy Balance Model Parameter
Estimation with an Extended Kalman

Filter

Auralius Manurung ∗ Lisa Kristiana ∗∗ Dwi Aryanta ∗∗

∗ Universitas Pertamina, Jakarta, Indonesia (e-mail:
auralius.manurung@ieee.org)

∗∗ Institut Teknologi Nasional Bandung, Bandung, Indonesia (e-mail:
[lisa,dwiaryanta]@itenas.ac.id)

Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
modeling and parameter identification of such a device. The thermal device that we use is
an educational device developed in-house. First, we derive the device’s mathematical model
using a zero-order energy balance model as the template model. Next, we find the model’s best
parameters by performing an optimization process. Finally, we implement an Extended Kalman
Filter technique to accommodate the possibility that those parameters may change over time.
Our experiments show that when we have reliable measurements and a reliable system model,
the Kalman filtering technique can perform well as an online parameter estimator and act as a
basis to build an adaptive model.

Keywords: Recursive identification, process modeling and identification, embedded computer
control systems and applications.

1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman

An Energy Balance Model Parameter
Estimation with an Extended Kalman

Filter

Auralius Manurung ∗ Lisa Kristiana ∗∗ Dwi Aryanta ∗∗

∗ Universitas Pertamina, Jakarta, Indonesia (e-mail:
auralius.manurung@ieee.org)

∗∗ Institut Teknologi Nasional Bandung, Bandung, Indonesia (e-mail:
[lisa,dwiaryanta]@itenas.ac.id)

Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
modeling and parameter identification of such a device. The thermal device that we use is
an educational device developed in-house. First, we derive the device’s mathematical model
using a zero-order energy balance model as the template model. Next, we find the model’s best
parameters by performing an optimization process. Finally, we implement an Extended Kalman
Filter technique to accommodate the possibility that those parameters may change over time.
Our experiments show that when we have reliable measurements and a reliable system model,
the Kalman filtering technique can perform well as an online parameter estimator and act as a
basis to build an adaptive model.

Keywords: Recursive identification, process modeling and identification, embedded computer
control systems and applications.

1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman

An Energy Balance Model Parameter
Estimation with an Extended Kalman

Filter

Auralius Manurung ∗ Lisa Kristiana ∗∗ Dwi Aryanta ∗∗

∗ Universitas Pertamina, Jakarta, Indonesia (e-mail:
auralius.manurung@ieee.org)

∗∗ Institut Teknologi Nasional Bandung, Bandung, Indonesia (e-mail:
[lisa,dwiaryanta]@itenas.ac.id)

Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
modeling and parameter identification of such a device. The thermal device that we use is
an educational device developed in-house. First, we derive the device’s mathematical model
using a zero-order energy balance model as the template model. Next, we find the model’s best
parameters by performing an optimization process. Finally, we implement an Extended Kalman
Filter technique to accommodate the possibility that those parameters may change over time.
Our experiments show that when we have reliable measurements and a reliable system model,
the Kalman filtering technique can perform well as an online parameter estimator and act as a
basis to build an adaptive model.

Keywords: Recursive identification, process modeling and identification, embedded computer
control systems and applications.

1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman

An Energy Balance Model Parameter
Estimation with an Extended Kalman

Filter

Auralius Manurung ∗ Lisa Kristiana ∗∗ Dwi Aryanta ∗∗

∗ Universitas Pertamina, Jakarta, Indonesia (e-mail:
auralius.manurung@ieee.org)

∗∗ Institut Teknologi Nasional Bandung, Bandung, Indonesia (e-mail:
[lisa,dwiaryanta]@itenas.ac.id)

Abstract: This paper presents modeling and parameter estimation of a thermal system, which is
often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional
online parameter estimation. In this paper, we implement an Extended Kalman Filter for
modeling and parameter identification of such a device. The thermal device that we use is
an educational device developed in-house. First, we derive the device’s mathematical model
using a zero-order energy balance model as the template model. Next, we find the model’s best
parameters by performing an optimization process. Finally, we implement an Extended Kalman
Filter technique to accommodate the possibility that those parameters may change over time.
Our experiments show that when we have reliable measurements and a reliable system model,
the Kalman filtering technique can perform well as an online parameter estimator and act as a
basis to build an adaptive model.

Keywords: Recursive identification, process modeling and identification, embedded computer
control systems and applications.

1. INTRODUCTION

Heat transfer modeling on thermal systems is a essential
since it provides engineers better insights into the system
processes and allows sophisticated control implementa-
tions. However, this modeling task can be challenging since
a thermal system’s nonlinear behaviors are commonly
found in the model parameters. In contrast, the used
model itself is linear (see Jonsson and Palsson (1994)).
As a result, the model performance may deteriorate if the
parameters are assumed to be constant at all times.

In a situation where the nonlinear behaviors are found
in the system’s parameters or where the parameters are
actually changing as functions of time, online parameter
estimation can be used as one of the solutions. For this
purpose, a Kalman filtering technique can be used, such
as found in the works by Song et al. (2017), Kim et al.
(2016), Jonsson and Palsson (1994), Mutambara and Al-
Haik (1999) and Yanou et al. (2016). In general, a Kalman
filtering technique is used for state estimation. However,
it can also be used to perform parameter estimation
by extending the system’s state model with the model
parameters that we want to estimate (see Blanchard et al.
(2007) and Walker (2006)). As the result, the Kalman filter
will estimate both the state variables and the added model
parameters.

To model a thermal system, an energy balance model can
be used as a template model. An energy balance model is
most common in environmental science where it is used
to model the climate systems (see Roques et al. (2014)).

In this paper, we use a zero-dimensional energy balance
model. The term zero-order is used to describe that there
is no spatial variable in the model. Such model is the
simplest form of an energy balance model. Park et al.
(2020) also use a zero-order energy balance model in their
work, although they do not include time delay in their
energy balance equations. As for the model parameters,
we use an optimization process to find their best values.

In order to test the proposed concept, we have developed
a thermal device that is originally developed for teaching
purpose (see Section II). Recently, educational thermal de-
vices have become more widely used in several engineering
courses, such as in Park et al. (2020), Tran et al. (2019),
and Barbosa (2020). Besides teaching, the same devices
can also be used for research, such as as test devices
for control system developments (see Cui et al. (2020)).
These educational devices are typically compact in size,
low-cost, and easy to build. Since the thermal process
is generally slow, it does not require a high-performance
control computer and data acquisition system.

This paper takes the references above and investigates the
use of a Kalman filtering technique to enhance a thermal
system modeled by using an energy balance model with
delayed input and an already optimized set of parameters.
Our contribution will be the overall investigation process
that we introduce in this paper. Here we demonstrate
that if noises do not significantly contaminate the state
variables, a Kalman filtering technique should perform
very satisfactorily as an online parameter estimator. Addi-
tionally, we also contribute to the application of a Kalman
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Fig. 1. The developed temperature control device.

filtering technique in heat transfer science. To the best
of the authors’ knowledge, a Kalman filtering technique is
not very common in heat transfer science. Moreover, using
a Kalman filtering technique for parameter estimation is
not as common as using it for state estimation.

This paper organizes as follows. In Section 2, we describe
the hardware design of the thermal test device. In Section
3, we perform system modeling. In Section 4, we imple-
ment and test the online parameter estimation procedures.
In Section 5, we evaluate the estimation results. Finally,
we present our conclusion in Section 6.

2. HARDWARE DESCRIPTION

The thermal device that we use for testing purpose in
this paper is shown in Fig. 1. The device is compact in
size and stacked on top of an Arduino Uno (Arduino AG,
Italy) board. To program the Arduino, we use MATLAB
Simulink (MathWorks Inc., USA) software in the control
computer. The Arduino Uno acts only as an input-output
server. The main control program, written with Simulink,
runs in the control computer with a sampling frequency of
10 Hz.

The developed device is equipped with one heater (a 27
Ω/5 W ceramic power resistor) and one small fan. Both the
heater’s temperature and the fan’s speed can be controlled
by sending Pulse-Width-Modulation (PWM) signals. An
external 12 V / 2 A power supply powers both the heater
and the fan. To measure the temperature of the heater,
an analog temperature sensor is attached to the heater
(LM35).

3. PHYSICAL MODELING AND PARAMETER
OPTIMIZATION

To model the temperature test-bench, we deployed an
energy balance model with a time delay in its input. In
an energy balance model, the amount of heat received
by a system equals the amount of heat dissipated by
that system added with the amount of heat stored in
that system. The dissipated heat occurs through both
convective and radiative heat losses.

Taking into account the heat loss due to the running
fan, we introduce to the model two convective losses: the
normal convective loss and the forced convective loss. As

Table 1. Parameter constraints and the opti-
mized parameters.

Constraints Optimized
Upper Lower Values

h1 100 10 41.563

h2 200 10 99.955

ε 1 0.9 0.950

cr 2000 1 1599.672

θ 15 5 10.002

a result, the governing dynamic equation of the proposed
thermal test device can be expressed as follows:

α(t− θ)Pmax︸ ︷︷ ︸
Generated heat

= mcr
dTr(t)

dt︸ ︷︷ ︸
Stored heat

+ h1 (Tr(t)− T∞)︸ ︷︷ ︸
Normal convective loss

+

εσA
(
Tr(t)

4 − T 4
∞
)

︸ ︷︷ ︸
Radiative loss

+ γ(t)h2 (Tr(t)− T∞)︸ ︷︷ ︸
Forced convective loss

(1)

The nomenclature for Equation 1 is as follows:

• cr is the heat capacity of the power resistor (in
J/(kg K)).

• h1 and h2 are the normal and forced convective heat
transfer coefficients, respectively (in W/(m2K)).

• Tr and T∞ are the power resistor’s temperature and
the ambient temperature, respectively (in Kelvin).

• ε is the emissivity (unitless).
• σ is the Stefan-Boltzmann constant (5.67 × 10−8

W/(m2K4)).
• γ is the applied PWM input to the fan (from 0 to 1,
unit-less).

• α is the PWM input applied to the heater (from 0 to
1, unit-less).

• θ is the input time delay (in seconds).
• Pmax is the maximum power that can be delivered to
the power resistor ( Pmax = 5.3W).

Additionally, there are several parameters whose values are
approximated from measurements by using a ruler and a
weight scale. They are the mass (m = 0.005 kg) and the
surface area (A = 0.0008m2) of the ceramic power resistor.

Once we have established the template model, the next
step is to find the unknown parameters’ values, which
are h1, h2, ε, cr, and θ, using an optimization technique.
To do this, we stimulated the test device with arbitrary
PWM signals for both inputs while at the same time
we recorded the resulting temperature (the top plot in
Figure 2). After that, we then performed an optimization
process to find the optimal values of the parameters
mentioned above using the collected data (the center
plot in Figure 2). Here, we use a MATLAB built-in
fmincon command, a nonlinear optimization technique
with predefined parameter constraints. Details on this
topic can be found in Kristiana and Manurung (2021).

The predefined constraints and the resulting optimized
parameters are shown in Table 1. In Figure 2, we compare
the output from the optimized model with the actual
measurements. The optimized energy balance model fits
the actual measurements nicely with a maximum absolute
error of 5 degrees centigrade.
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Fig. 2. Comparison between the actual temperature and
the temperature calculated by the optimized model.

4. EXTENDED KALMAN FILTER DESIGN

An EKF is a type of Kalman filter for a nonlinear system.
From Equation 1, we notice that the system’s nonlinearity
comes from the radiative term. However, the contribution
of this radiative term is minimal when compared to the
other two convective terms. Thus, the nonlinearity most
certainly comes from the model’s parameters, not from
the model itself.

In this section, we first generate a new state-space model
that includes the four parameters we want to estimate,
which are T∞, h1, h2 and cr. After that, we apply the EKF
procedure to estimate the values of those parameters.

4.1 The Parametrization

To implement the EKF, we must first formulate the energy
balance model model in Equation 1 into its canonical state-
space model. First, Equation 1 can be rewritten as follows:

dTr(t)

dt
=

1

mcr

{
α(t− θ)Pmax + h1

(
T∞ − Tr(t)

)
+

γ(t)h2

(
T∞ − Tr(t)

)
+ εσA

(
T 4
∞ − Tr(t)

4
)} (2)

Next, by using a finite difference method, we can discretize
Equation 2 as follows:

dT (t)

dt
=

Tr(t+∆t)− Tr(t)

∆t

Tr(t+∆t) =
dT (t)

dt
∆t+ Tr(t)

(3)

where ∆t is the discretization sampling time. Substituting
Equation 2 to Equation 3 will give us:

Tr(t+∆t) =
∆t

mcr

{
α(t− θ)Pmax+

h1

(
T∞ − Tr(t)

)
+ γ(t)h2

(
T∞ − Tr(t)

)
+

εσA
(
T 4
∞ − Tr(t)

4
)}

+ Tr(t)

(4)

After that, we selected four model parameters that we
want to estimate by using the EKF. They are the ambient
temperature (T∞), the normal convective heat transfer
coefficient (h1(t)), the forced convective heat transfer
coefficient (h2(t)) and the power resistor heat capacity
(cr(t)). From this point, those four parameters are now
functions of time. Let us now introduce new state variables
z(k) as follows:

z(k) = [z1(k) z2(k) z3(k) z4(k) z5(k)]
T

= [Tr(k) T∞(k) h1(k) h2(k) cr(k)]
T

(5)

where k = 0, 1, 2, . . . and t = k∆t. In total, there are five
new variables: one state variable and four parameters.

Let us consider an input vector u(k) = [u1(k) u2(k)]
T
=

[α(k) γ(k)]
T
. Thus, we can complete the state-space form

as follows:

z1(k + 1) =
∆t

m z5(k)z1(k)

{
u1

(
k − θ

∆t

)
Pmax+

z3(k)
(
z2(k)− z1(k)

)
+

u2(k)z4(k)
(
z2(k)− z1(k)(t)

)
+

εσA
(
z2(k)

4 − z1(k)
4
)}

+

z1(k) + v1(k)

z2(k + 1) = z2(k) + v2(k)

z3(k + 1) = z3(k) + v3(k)

z4(k + 1) = z4(k) + v4(k)

z5(k + 1) = z5(k) + v5(k)

(6)

where v(k) = [v1(k) v2(k) v3(k) v4(k) v5(k)]
T

is the ad-
ditive process noise. Since the only measurable output is
z1(k), the output becomes a scalar and its equation can
be written as follows:

y(k) = [1 0 0 0 0] z(k) +w(k) (7)

where y(k) ∈ R is the output vector and w(k) ∈ R is the
additive measurement noise vector. Both v(k) and w(k)
are assumed to be zero-mean white Gaussian distribution.

4.2 The Extended Kalman Filter Procedure

First, let us reformulate Equation 6 and Equation 7 into
their formal short forms.

z(k) = f
(
z(k − 1),u(k − 1)

)
+ v(k − 1)

y(k) = h
(
z(k)

)
+w(k)

(8)

Next, we will implement the EKF procedure for the
two equations above, which consists of two repetitive
procedures (see Chui and Chen (2017)): time update and
measurement update.

Time Update Let us introduce ẑp(k) and ẑ(k) as the prior
and posterior estimate of z(k), respectively. Hence, the
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Fig. 2. Comparison between the actual temperature and
the temperature calculated by the optimized model.

4. EXTENDED KALMAN FILTER DESIGN

An EKF is a type of Kalman filter for a nonlinear system.
From Equation 1, we notice that the system’s nonlinearity
comes from the radiative term. However, the contribution
of this radiative term is minimal when compared to the
other two convective terms. Thus, the nonlinearity most
certainly comes from the model’s parameters, not from
the model itself.

In this section, we first generate a new state-space model
that includes the four parameters we want to estimate,
which are T∞, h1, h2 and cr. After that, we apply the EKF
procedure to estimate the values of those parameters.

4.1 The Parametrization

To implement the EKF, we must first formulate the energy
balance model model in Equation 1 into its canonical state-
space model. First, Equation 1 can be rewritten as follows:

dTr(t)

dt
=

1

mcr

{
α(t− θ)Pmax + h1

(
T∞ − Tr(t)

)
+

γ(t)h2

(
T∞ − Tr(t)

)
+ εσA

(
T 4
∞ − Tr(t)

4
)} (2)

Next, by using a finite difference method, we can discretize
Equation 2 as follows:

dT (t)

dt
=

Tr(t+∆t)− Tr(t)

∆t

Tr(t+∆t) =
dT (t)

dt
∆t+ Tr(t)

(3)

where ∆t is the discretization sampling time. Substituting
Equation 2 to Equation 3 will give us:

Tr(t+∆t) =
∆t

mcr

{
α(t− θ)Pmax+

h1

(
T∞ − Tr(t)

)
+ γ(t)h2

(
T∞ − Tr(t)

)
+

εσA
(
T 4
∞ − Tr(t)

4
)}

+ Tr(t)

(4)

After that, we selected four model parameters that we
want to estimate by using the EKF. They are the ambient
temperature (T∞), the normal convective heat transfer
coefficient (h1(t)), the forced convective heat transfer
coefficient (h2(t)) and the power resistor heat capacity
(cr(t)). From this point, those four parameters are now
functions of time. Let us now introduce new state variables
z(k) as follows:

z(k) = [z1(k) z2(k) z3(k) z4(k) z5(k)]
T

= [Tr(k) T∞(k) h1(k) h2(k) cr(k)]
T

(5)

where k = 0, 1, 2, . . . and t = k∆t. In total, there are five
new variables: one state variable and four parameters.

Let us consider an input vector u(k) = [u1(k) u2(k)]
T
=

[α(k) γ(k)]
T
. Thus, we can complete the state-space form

as follows:

z1(k + 1) =
∆t

m z5(k)z1(k)

{
u1

(
k − θ

∆t

)
Pmax+

z3(k)
(
z2(k)− z1(k)

)
+

u2(k)z4(k)
(
z2(k)− z1(k)(t)

)
+

εσA
(
z2(k)

4 − z1(k)
4
)}

+

z1(k) + v1(k)

z2(k + 1) = z2(k) + v2(k)

z3(k + 1) = z3(k) + v3(k)

z4(k + 1) = z4(k) + v4(k)

z5(k + 1) = z5(k) + v5(k)

(6)

where v(k) = [v1(k) v2(k) v3(k) v4(k) v5(k)]
T

is the ad-
ditive process noise. Since the only measurable output is
z1(k), the output becomes a scalar and its equation can
be written as follows:

y(k) = [1 0 0 0 0] z(k) +w(k) (7)

where y(k) ∈ R is the output vector and w(k) ∈ R is the
additive measurement noise vector. Both v(k) and w(k)
are assumed to be zero-mean white Gaussian distribution.

4.2 The Extended Kalman Filter Procedure

First, let us reformulate Equation 6 and Equation 7 into
their formal short forms.

z(k) = f
(
z(k − 1),u(k − 1)

)
+ v(k − 1)

y(k) = h
(
z(k)

)
+w(k)

(8)

Next, we will implement the EKF procedure for the
two equations above, which consists of two repetitive
procedures (see Chui and Chen (2017)): time update and
measurement update.

Time Update Let us introduce ẑp(k) and ẑ(k) as the prior
and posterior estimate of z(k), respectively. Hence, the
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time update procedure of the EKF can then be written as
follows:

ẑp(k) = f
(
ẑ(k − 1),u(k − 1)

)
+ v(k − 1)

Pp(k) = F(k)P(k − 1)FT(k) +Q
(9)

where Pp(k) ∈ R5×5 and P(k) ∈ R5×5 are the prior
and posterior error covariance matrix, respectively; and
Q ∈ R5×5 is the covariance matrix of v(k). F(k) ∈ R5×5 is
the Jacobian of f(ẑ(k)) and can be calculated as follows:

F(k) =
∂f

(
ẑ(k − 1),u(k − 1)

)
∂ẑ(k − 1)

(10)

Equation 10 is solved numerically by using a finite differ-
ence method.

Before the first iteration, we initialize ẑ(0) and P(0) as
follows:

ẑ(0) =
[
32.7 32.7 41.563 99.955 1599.672

]T
P(0) = I ∈ R5×5

(11)

where I is an identity matrix. The initial value for ẑ1(0)
and ẑ2(0) are set to be close to the current room temper-
ature. While for the remaining, their initial values are the
optimal values that we have already found in the previous
section (see Table 1).

Measurement Update Let us introduce K(k) ∈ R as the
Kalman gain, R ∈ R as the covariance matrix of w, and
I ∈ R5×5 as an identity matrix. The measurement update
is implemented as follows:

K(k) = Pp(k)H
T (k)

(
H(k)Pp(k)H

T(k) +R

)−1

ẑ(k) = ẑp(k) +K(k)

(
z(k)−H(k)ẑp(k)

)

P(k) =

(
I−K(k)H(k)

)
Pp(k)

(12)

where H ∈ R1×5 is the Jacobian of h(ẑ(k)) and can be
calculated as follows:

H(k) =
∂h(ẑp(k))

∂ẑp(k)
(13)

Similar to Equation 10, we also solve Equation 13 numer-
ically by using a finite difference method.

4.3 Estimation Results

For a preliminary test, we ran the EKF procedure offline
for 1000 seconds, with a sampling time of 0.1 seconds,
using the same dataset as in Figure 2. Matrices Q and R
are heuristically set to be as follows:

Q =0.4× I ∈ R5×5

R =10
(14)

where I is an identity matrix.

The power resistor’s estimated temperature is presented in
Figure 3, along with the measured temperature. Estimated
model parameters: T∞, h1, h2, and cr are presented in
Figure 4, Figure 5, Figure 6, and Figure 7, respectively. All
of these figures show the evolution of the model parameters
as functions of time although the changes are relatively
very small. The largest changes that can be seen from the
figures above is in the ambient temperature.
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Fig. 3. Measured temperature (y(k)) compared to the
estimated temperature (ẑ1(k)).
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Fig. 4. Estimated ambient temperature (z2(k) or T∞(k)).
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Fig. 5. Estimated normal convective heat transfer coeffi-
cient (z3(k) or h1(k)).

However, there is no guarantee that we can ignore such
slight variations in the model parameters. We will inves-
tigate this issue in the next section. Moreover, due to the
nature of the deployed model, we must be aware that the
selected initial values may significantly affect the parame-
ter estimation results, although the state estimation may
not be affected. Therefore, the preliminary optimization
procedure is a crucial part of this EKF procedure.

5. EVALUATION WITH A CONSTANT INPUT
EXPERIMENT

In Section 3, the data-set used for the optimization proce-
dure was collected from the device transient phase only. On
the contrary, we evaluated the developed model by using a
different data-set collected during the device steady-state
phase to create a more significant discrepancy between
the model and the experiment. Therefore, we collected the
data by applying 50% of PWM input to the heater and the
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Fig. 6. Estimated forced convective heat transfer coeffi-
cient (z4(k) or h2(k)).
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Fig. 7. Estimated power resistor’s heat capacity (z5(k) or
cr(k)).
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Fig. 8. Measured temperature (y(k)) compared to the
estimated temperature (ẑ1(k)) for constant inputs.

fan for a more extended period, which was 3000 seconds.
As a result, the power resistor’s temperature rose to about
70 degrees of centigrade (see Figure 8), and mostly, it was
seated in its steady-state condition. At the same time, the
EKF procedure was running, performing estimations to
the state and the model parameters.

The EKF was initialized with the optimal parameter
values as in Table 1. The estimated state, in this case,
the power resistor’s temperature, is also shown in Figure 8.
While for the estimated model parameters, they are shown
in Figure 9, Figure 10, 11, and Figure 12. Similar to the
earlier experiments, changes in those model parameters are
also relatively very small.

Nonetheless, those small changes may still contribute to
performance differences. To test this idea, we implemented
a test scenario with two models. One model receives
parameter updates from the EKF, while another model
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Fig. 9. Estimated ambient temperature (z2(k) or T∞(k))
for constant inputs.
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Fig. 10. Estimated normal convective heat transfer coeffi-
cient (z3(k) or h1k) for constant inputs.
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Fig. 11. Estimated forced convective heat transfer coeffi-
cient (z4(k) or h2(k)) for constant inputs.
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Fig. 12. Estimated power resistor’s heat capacity (z5(k) or
cr(k)) for constant inputs.
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fan for a more extended period, which was 3000 seconds.
As a result, the power resistor’s temperature rose to about
70 degrees of centigrade (see Figure 8), and mostly, it was
seated in its steady-state condition. At the same time, the
EKF procedure was running, performing estimations to
the state and the model parameters.

The EKF was initialized with the optimal parameter
values as in Table 1. The estimated state, in this case,
the power resistor’s temperature, is also shown in Figure 8.
While for the estimated model parameters, they are shown
in Figure 9, Figure 10, 11, and Figure 12. Similar to the
earlier experiments, changes in those model parameters are
also relatively very small.

Nonetheless, those small changes may still contribute to
performance differences. To test this idea, we implemented
a test scenario with two models. One model receives
parameter updates from the EKF, while another model
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Fig. 13. The model with sn online parameter update
provides better estimations.

has its parameters set to fixed optimal values from Table
1. For each model, we compare its output to the measured
temperature from the actual device. As shown in Figure
13, the model that receives parameter updates from an
EKF does provide better estimation to the actual power
resistor’s temperature (top figure). The model with fixed
parameter gives a maximum estimation error of about
five degrees centigrade. As for the model with adaptive
parameters, the maximum estimation error is smaller,
which is about two degrees centigrade (bottom figure).

6. CONCLUSION AND FUTURE WORK

This paper has performed modeling of a thermal system
and implemented an EKF to estimate its state and model
parameters. Using an EKF for parameter estimation allows
us to improve the modeling performance. An accurate
model is often necessary for control applications, especially
model-based controls. However, this method might only be
applicable for a process system with low noise sensor read-
ings and a sufficiently good initial model and parameter
guesses. Such limitations are caused by the nature of the
model we selected, where the implemented EKF can pick
many local optimal values. Finding a more robust function
template becomes another topic that needs more in-depth
studies.

On the other hand, the model that we deployed can be
considered as simple. It is a zero-order energy balance
model with two input variables, one state variable, and one
output variable. However, there are five model parameters
for the implemented EKF to estimate, which causes the
solutions to the model parameters to become mathemat-

ically non-unique. In a more complex system, such as in
a higher-order energy balance model, in which there are
more state and output variables, the improvement offered
by the implemented EKF to the modeling is expected to be
higher since the system has fewer local optimum solutions.
Thus, in the future, we plan to implement this method into
a more complex system.
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