International Journal of ISSN 0973-4562 APPLIED ENGINEERING RESEARCH Prof. Ir Dr Mohd Sapuan Salit

Volume 12, Number 14, 2017

International Journal of Applied Engineering Research (IJAER)

Print ISSN 0973-4562 Online ISSN 0973-9769

Aims and Scope: The *International Journal of Applied Engineering Research (IJAER)* is an international research journal, which publishes top-level work from all areas of Engineering Research and their application including Mechanical, Civil, Electrical, Computer Science and IT, Chemical, Electronics, Mathematics, Environmental, Education Geological etc. Researchers in all technology and engineering fields are encouraged to contribute articles based on recent research. Journal publishes research articles and reviews within the whole field of Engineering Research, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.

Audience: Mechanical, computer, aeronautical, chemical, civil, electronics, mathematic, geology, electrical.

Submission: Authors are requested to submit their papers electronically to <u>IJAEReditor@gmail.com</u>

INDEXING: SCOPUS(2010-2017), EBSCOhost, GOOGLE Scholar, JournalSeek, J-Gate, ICI, Index Copernicus IC Value 82.67 and UGC Approved Journal - 2017 (Journal No. - 64529)

Publication Date and Frequency: Twenty four issues per year.

Publication Ethics and Publication Malpractice Statement

Editorial Board Members

Vol. 1 No.1 <u>No.2</u> <u>No.3</u> (2006)

Vol. 2 No.1 No.2 No.3 No.4 (2007)

26/01/2018 IJAER, International Journal of Applied Engineering Research, Engineering Journals, Engineering Research Journal publisher in India, Mechanical Jou...

- Vol. 3 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 (2008)
- Vol. 4 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10
 No.11 No.12 (2009)
- ↓ Vol. 5 No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21-22 23-24 (2010)
- **Vol.** 6 No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23-24 (2011)
- **Vol.** 7 No.1 2 3 4 5 6 7 8 9 10 11 12 (2012)
- **Vol.** 8 No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (2013)
- **Vol.** 9 No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (2014)
- **Vol.10 No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (2015)**
- **Vol.11 No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (2016)**
- **Vol.12** No.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (2017)
- **Vol.13 No.1 No.2** (2018)
- **Special Issues**
- **Authors Information**
- **H** <u>Subscription</u>
- **t** <u>Call for Papers</u>
- **H** <u>Other Journals</u>
- Library Recommendation Form
- © All rights are reserved with **Research India Publications** <u>Contact</u>

Home Journals

International Journal of Applied Engineering Research

http://www.ripublication.com/ijaer.htm

Aim and Scope

The International Journal of Applied Engineering Research (IJAER) is an international research journal, which publishes toplevel work from all areas of Engineering Research and their application including Mechanical, Civil, Electrical, Chemical Electronics, Mathematics and Geological etc. Researchers in all technology and engineering fields are encouraged to contribute articles based on recent research. Journal publishes research articles and reviews within the whole field of Engineering Research. and it will continue to provide information on the latest trends and developments in this ever-expanding subject. It aims to disseminate knowledge; provide a learned reference in the field; and establish channels of communication between

academic and research experts, policy makers and executives in industry, commerce and investment institutions

Audience:

Mechanical, aeronautical, chemical, civil, electronics, mathematic, geology, electrical.

Frequency of Publication:

One Volume with twelve issues per year.

Submission of Manuscripts

Authors are strongly urged to communicate with one of the Associate Editors or the Editor-in-Chief: Prof. Ir Dr Mohd Sapuan Salit, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia E-Mail: IJAEReditor@gmail.com before submitting an article and furnish a one-page outline of the proposed article and information as to its type, audience, and probable length (limit 25 Journal pages). The final decision on publication is made by the Editor-in-Chief upon recommendation of an Associate Editor and / or an Editorial Board Members. Please visit the journal's home pages at http://www.ripublication.com/ijaer.htm for details of aims and scope, readership,

instruction to authors and publishing procedure and table of contents. Use website to order a subscription, reprints, a sample copy

Subscription Rates

Ou	tsid	e	Ind	ia:

Library/Institutional print only	TICC INCO
Library/Institutional Li	: 05\$ 1160
Library/institutional online only	: US\$ 1140
Library/Institutional print+online	: US\$ 1200
Individual/ Personnel print only	: US\$ 580

Inside India (Library/Institutional):

Library :

Rs.5500

Publisher:

All business correspondence, enquires and subscription orders should be addressed to

Editorial Office Research India Publications 3-2/84, Ground Floor, Rohini Sector-16, Delhi-110089, INDIA Fax No.: +91-011-27297815 Email: info@ripublication.com Vebsite: www.ripublication.com

2017 Research India Publication, India

rinted in India

I material published in this journal is protected by copyright, which covers exclusive rights to reproduce and distribute the aterial. No material published in this journal may be reproduced or stored on microfilm or in electronic, optical or magnetic

h

International Journal of Applied Engineering Research Volume 12, Number 14 (2017)

ublishes top- ll, Chemical,	Conte
io contribute 1g Research,	Integr
on between	A. Gan
1.1	Analy Abdel
	A Not

l Sapuan elangor, ticle and e by the

lership, e copy

Contents	
	4101 4100
2000 10 Veriable Structure Observer based Optimal Controller for Damping Frequency	4191-4198
Integrating SSSC with Variable Structure Observer and a	
Scillations of Deregulated Forder Systems	
- Ganga Dinesh Kumur and the	
r a to to consister shannels	4199-4204
analytical Admittance and Noise Calculations in InGaAs transistor chamters	
bdel Madjid Mammeri, Fatima Zohra Mahi and Luca Varani	
	4205 4212
G Lating Algorithm with Dempster Shafer Fusion Information for Medical Datasets	4205-4212
A Novel Feature Selection Algorithm with Dempeter	
R Naveen Kumar and Dr. H. Mana Land	
, I-T Smort Compils	4213-4220
Building Automation and Context Aware Energy Consumption using 101 – Smart Campus	
Manu Jain, Asmita Varma, N Kaushik and Kayalvizhi Jayavel and Sivahaulan K	
a second scorecard as a Decision Aid Framework	4221-4257
A Critical Evaluation of the Sustainability Balanced Scotecul annouar	
Fadwa Chaker, Mohammea Abaou Janari Tarissi, Homen	
have the sillers themabile	4238-4247
Strategy of the policy of sustainable housing development using AHP method at the vinage manant	
Maluku, Indonesia	
AM. Pattinaja and Dino Rimantho	
	1210 1257
The deling For User Experience Design	4248-4257
An Appliance Door Virtual Modeling For Cace Emperitor	
Filippo Cucinoita ana Feice Stravara	
the Crock in the Carrying-Out	4258-4263
Effective Analysis of the Radio Wave's Diffraction on the Short-Circuited Crack in the Carrying Out	
Screen	
Aleksandr V. Ostankov, Sergey A. Antipov, Konstantin A. Razinkin und Character a	
	1261 128
the set of Power Losses on the Medium Voltage Feeders and Distribution Transformers	4204-420
Calculation Analysis of Fower Losses on the second	
Waluyo, Auta Nul Funatyunida, em an	
	4282-428
Visual Analytics of Millions of GPU Threads	
SeongKi Kim and HyukSoo Han	
	4296 420
The second s	4280-429
Neonatal Seizure Detection using Time-Trequency and p	
M, B. Malarvill, V.Suele and B. Doushash	
Allewing Flement	4299-430
Prenare Nitinol Alloys and Improve their Hardness Using Copper as an Anoying Excinctiv	
Salah Noori Alnomani, Essam Zuheir Fadhel and Auday Abia Menaliaj	
	1200 12
the function of the second sec	4309-43
Comparative Study of Five Text Classification angle and the study of Five Text Classification and Fired H Abdul Ameer	
Ahmed H. Allwy and Esrad H. Abdan American	
The second	4320-43
How to Determine Spot Matching Results by Probabilistic Reliability using Homogeneous Multiple Orapie	
in Two-Dimensional Polyacrylamide Gel Electrophoresis	
Das Seong Jeoune, Chan-Myeong Han, Yun-Kyoo Kyoo, Jae Huk Sa, Beomenser	

International Journal of Applied Engineering Research (IJAER)

Volume 12, Number 14 (2017)

CONTENTS

Optimization in the orientation recognition for pieces in the base mounting station belonging to the FMS200 through image processing pp. 4044-4048 Laura Quiroga, Luis Vargas and Holman Montiel

A Comprehensive Model for Better Multicast Routing Protocol (BMRP-QoS) to Improve Qos in Manets pp. 4049-4055 M.Saseekala and P.Kamalakannan

Automated Design of a Second Order Sigma Delta Modulator using Success History Based Adaptive Differential Evolution Algorithm

pp. 4056-4066 Shravan Kudikala and Samrat L. Sabat

Fatigue Life of Electrodischarge Drilled Inconel 718 pp. 4067-4071

Bassoli Elena

Adsorption of Hexavalent Chromium from Aqueous Medium Using a New Schiff Base Chitosan Derivative

pp. 4072-4082 Balakrishna Prabhu K, M.B. Saidutta and M. Srinivas Kini

FPGA Implementation of Image Denoiser using Dual Tree Complex Wavelet Transform (DTCWT) pp. 4083-4089 SK. Umar Faruk, K.V. Ramanaiah and K. Soundararajan

Supervisor Control for a Stand-Alone Hybrid Generation System

pp. 4090-4097 Kowsalya.M, A. Thamilmaran and P.Vijayapriya

Block Sparse and Addressing for Memory BIST Application

pp. 4098-4105 Mohammed Altaf Ahmed, D Elizabath Rani and Syed Abdul Sattar

<u>Comparison of Experts and Non-Experts Gaze Pattern for the Target as Optic Disc in the</u> <u>Fundus Retinal Images</u> pp. 4106-4112 Nilima Kulkarni and Amudha J

Process Optimization of the Transesterification Processes of Palm Kernel and Soybean Oils for Lube Oil Synthesis pp. 4113-4129 Samuel E Sanni, Moses, E Emetere, Vincent E Efeovbokhan and Joseph D Udonne

Object Recognition Using Log-Euclidean Multivariate Gaussian Descriptors pp. 4130-4137 B. Ramesh Naik and T. Venu Gopal

Symbol Error Probability Analysis of Quadrature Phase Shift Keying Using Hybrid Diversity Technique over Rayleigh Fading pp. 4138-4140 B, Suresh Ram and P, Siddaiah

Evolution of High Speed Railway Communication system towards 5G: A Unique Scalable Model using Distributed Mobile Relays pp. 4141-4144 Pramod P J and B C Jinaga

<u>MIMO PLC Channel Modeling on Indian Residential Networks</u> pp. 4145-4151 Shashidhar Kasthala., GKD Prasanna Venkatesan and A Amudha

<u>Temperament as a Determinant of Success in Formative Assessment in Engineering</u> <u>Education</u> pp. 4152-4161 Kehdinga George Fomunyam and Thoko Mnisi

<u>A Numerical Investigation on Variable Shape Parameter Schemes in a Meshfree Method</u> <u>Applied to a Convection-Diffusion Problem</u> pp. 4162-4170 Nissaya Chuathong and Sayan Kaennakham

Environmental Effect of Climate Change Pollutants Loading on Structural Steel Stresses pp. 4171-4183 Ben U, Ngene, Anthony N, Ede, Gideon O, Bamigboye, Kumar Prashant and Imam Boulent

An Efficient Certificateless Authentication Encryption for WSN Based on Clustering Algorithm pp. 4184-4190 Shailendra Singh Gaur, A.K. Mohapatra and Rashmi Roges

Integrating SSSC with Variable Structure Observer based Optimal Controller for Damping Frequency Oscillations of Deregulated Power System pp. 4191-4198 A. Ganga Dinesh Kumar and N.V. Ramana Analytical Admittance and Noise Calculations in InGaAs transistor channels

pp. 4199-4204

Abdel Madjid Mammeri, Fatima Zohra Mahi and Luca Varani

<u>A Novel Feature Selection Algorithm with Dempster Shafer Fusion Information for Medical</u> Datasets

pp. 4205-4212 R.Naveen Kumar and M. Anand Kumar

Building Automation and Context Aware Energy Consumption using IoT – Smart Campus pp. 4213-4220

Manu Jain, Asmita Varma, N Kaushik, Kayalvizhi Jayavel and Sivanathan K

<u>A Critical Evaluation of the Sustainability Balanced Scorecard as a Decision Aid Framework</u> pp. 4221-4237

Fadwa Chaker, Mohammed Abdou Janati Idrissi and Abdellah El Manouar

<u>Strategy of the policy of sustainable housing development using AHP method at the village</u> <u>Ihamahu-Maluku, Indonesia</u>

pp. 4238-4247 AM. Pattinaja and Dino Rimantho

An Appliance Door Virtual Modeling For User Experience Design

pp. 4248-4257 Filippo Cucinottaa and Felice Sfravaraa

Effective Analysis of the Radio Wave's Diffraction on the Short-Circuited Crack in the Carrying-Out Screen

pp. 4258-4263 Aleksandr V. Ostankov, Sergey A. Antipov, Konstantin A. Razinkin and Churakov P. Pavlovich

<u>Calculation Analysis of Power Losses on the Medium Voltage Feeders and Distribution</u> <u>Transformers</u> pp. 4264-4281 Waluyo, Aulia Nur Fahdiyalhaq and Siti Saodah

Vishual Analytics of Millions of GPU Threads pp. 4282-4285 SeongKi Kim and HyukSoo Han

Neonatal Seizure Detection using Time-Frequency Renyi Entropy of HRV signals

pp. 4286-4298 M. B. Malarvili, V.Sucic and B. Boashash

<u>Prepare Nitinol Alloys and Improve their Hardness Using Copper as an Alloying Element</u> pp. 4299-4308 Salah Noori Alnomani, Essam Zuheir Fadhel and Auday Abid Mehatlaf

Comparative Study of Five Text Classification Algorithms with their Improvements

pp. 4309-4319 Ahmed H. Aliwy and Esraa H. Abdul Ameer

How to Determine Spot Matching Results by Probabilistic Reliability using Homogeneous Multiple Graphs in Two-Dimensional Polyacrylamide Gel Electrophoresis

pp. 4320-4328 Dae-Seong Jeoune, Yun-Kyoo Ryoo, Beomcheol Lee, Chan-Myeong Han, Jae Hak Sa and Wook Hyun Kim

An Efficient Password-Only Authenticated Three-Party Key Exchange Protocol pp. 4329-4339 Youngsook Lee, Juryon Paik and Younsung Choi

<u>Development of Mathematical Model of Heat and Mass Transfer in Soil, with Provision for</u> <u>Gradients of Soil-Water and Soil-Salt Potentials. Part 1.</u> pp. 4340-4344 Evgeniy V. Markov, Sergey A. Pulnikov, Yuri S. Sysoev and Aleksandr D. Gerber

An Automatic Detection of Anomalous Energy Consumption by Leveraging BEMS Big Data Analytics pp. 4345-4349 Jong Wook Kim

A Queue-Based Energy Saving Scheme for Mobile Embedded Systems with Multiple Radio Interfaces pp. 4350-4355

Su Min Kim, Sukhyun Seo and Junsu Kim

<u>New Perspectives in Removal of Organic Pollutants from Industrial Wastewater mediated</u> by the Fenton Process pp. 4356-4364 Claudia Espro, Silvia Marinia and Signorino Galvagno

<u>An Intelligent Radio Access Technology Selection For Vehicular Communications</u> pp. 4365-4371 Mohanad Faeq Ali, Nor Haryati Harum and Nur Azman Abu

<u>Applying MDA approach for Spring MVC Framework</u> pp. 4372-4381 Aziz Srai, Fatima Guerouatem, Naoual Berbiche and Hilal Drissi Lahsini

Formic Acid Production from Palm Oil Empty Fruit Bunches

pp. 4382-4390 Jabosar Ronggur Hamonangan Panjaitan and Misri Gozan

Design of Anti-Sticking Membrane for RF MEMS Tunable Capacitor

pp. 4391-4394 G.K. Alagashev and A.V. Gulyaev

Development and Implementation of the Separation Method on a CMM for Decoupling

Probe Errors, Machine Errors and Roundness Errors pp. 4395-4404

Loubna Laaouina, Abdelhak Nafi and Ahmed Mouchtachi

Accessible Digital Repositories for Inclusive Education

pp. 4405-4414 J. Puello, Y. Puerta and L. Martínez

<u>CFD Analysis of a Flat Plate Solar Collector for Improvement in Thermal Performance with</u> <u>Geometric Treatment of Absorber Tube</u>

pp. 4415-4421 K. Vasudeva Karanth and Jodel A. Q. Cornelio

Anomalous Behavior on the Electrical Properties of Cu2+ Substitution in Li-ferrite

pp. 4422-4426 Sanatombi S, Ibetombi S and Sumitra P

<u>Scalability Analysis using Auto-configuration process for coalescing of heterogeneous</u> <u>Wireless adhoc networks</u>

pp. 4427-4432 Pradeep Kumar Gaur and Anupma Marwaha

Design of Low power Reconfiguration based Modulation and Demodulation for OFDM Communication Systems pp. 4433-4442 G. Manikandan and M. Anand

Impact of Denial of Service (DoS) attack in Smart Distribution Grid Communication Network pp. 4443-4447 Premkumar S and Saminadan V

Fast and Effective Fuzzy Parameters based cloud provisioning by means of Modified PSO

pp. 4448-4454 A.Inbarajan and N. P. Gopalan

<u>Performance Investigation of Raman- Parametric Hybrid for Broadband Amplification in L-band</u> pp. 4455-4459 Gaganpreet Kaur, Gurmeet Kaur and Sanjay Sharma

<u>Evaluation of Properties of LM 25-Alumina–Boron Carbide MMC with Different Ratios of</u> <u>Compositions</u> pp. 4460-4467 T.Vishnu Vardhan, U. Nagaraju, G.Harinath Gowd and V.Ajay

Multiple Forward Error Correction in ARQ Systems by Combining Three Consecutive Erroneous Frames in a Wireless Sensor Network pp. 4468-4473 Shylashree N and Pratibha K

New Bimetal Bearing Shell for Internal Combustion Engine

pp. 4474-4477 Yu.V. Kontsevoi, A.G. Mejlakh A.B. Shubin, E.A. Pastukhov, and I.S. Sipatov

Strengthening of RCC Column Using Glass Fibre Reinforced Polymer (GFRP)

pp. 4478-4483 R. Sudhakar and P. Partheeban

Performance Optimization of Broadband Communication System using Hybrid Parametric Amplifier pp. 4484-4490 Gaganpreet Kaur, Gurmeet Kaur and Sanjay Sharma

Optimal Power Allocation and Performance Analysis of Cooperative Multicast Systems Using Non-Orthogonal Multiple Access pp. 4491–4497 In-Ho Lee and Haejoon Jung

A New Design of Roller Chain 415

pp. 4498-4501 Ivan Yakobus, Djoko Setyanto and Isdaryanto Iskandar

Accounting of Transportation Work in Automated Dispatching Control Systems

pp. 4502-4517 Andrey B. Nikolaev, Svetlana A. Vasyugova, Andrey R. Ismailov, Leonid I. Berner and Tat'yana E. Mel'nikova

<u>Nonlinear Autoregressive Recurrent Neural Network Model For Solar Radiation Prediction</u> pp. 4518-4527 Yazeed A. Al-Sbou and Khaled M. Alawasa

Expeditious Approach to Identify the Product Sentiment Based on MORQA System and Polarity Shift Mechanism pp. 4528-4533 Vallikannu Ramanathan and T.Meyyappan

<u>Phytoremediation Potential of Weedy plants in Heavy Metal Contaminated Benthic Lake</u> <u>sludge</u> pp. 4534-4538 Subha.M and Srinivas. N

<u>Kinetics of Base Catalysed Trans-Esterification of Jatropha Oil using Potassium Hydroxide</u> <u>Extract from Ripe Plantain Peels.</u>

pp. 4539-4548 Vincent E. Efeovbokhan, James A. Omoleye, Eric E Kalu and Joseph D. Udonne

Assessment of Anthropometric Differences in the Design of Workstations: Case Studies of an Automotive Assembly Line

pp. 4549-4555 Raffaele Castellone, Stefania Spada, Giovanni Caiazzo and Maria Pia Cavatorta <u>A Review of the Fundamentals on Process Capability, Process Performance, and Process</u> <u>Sigma, and an Introduction to Process Sigma Split</u> pp. 4556-4570 Gabriele Arcidiacono and Stefano Nuzzi

Stability Enhancement in Grid Integrated Real Time Wind Energy Conversion System with Compensating Devices pp. 4571-4577 Balamurugan P, Muthukannan P and Subramanian R

A New Model for Predicting Liquid Loading in Multiphase Gas Wells

pp. 4578-4586 Bolujo E.O, Fadairo A.S, Ako C.T, Orodu D.O, Omodara O.J and Emetere M.E.

<u>Sectional Investigation of Seasonal Variations of Surface Refractivity and Water Vapour</u> <u>Density over Nigeria</u> pp. 4587-4598 S. A. Akinwumi, T. V. Omotosho, A. A. Willoughby and M. E. Emetere

Decrease in Power Inputs in Pneumodrive Weighing-and-Packing Machine

pp. 4599-4603 Andrey Nikolaevich Sirotenko and Svetlana Anatolievna Partko

Physical Simulation of Near-Wellbore Rocks Temperature Reduction Process in the Earth's Interior pp. 4604-4609 A.V. Volkov, A.V. Ryzhenkov, A.V. Kurshakov, S.V. Grigoriev and V.V. Bekker

Extreme Learning Machine: A Review

pp. 4610-4623 Musatafa Abbas Abbood Albadr and Sabrina Tiun

<u>Controller Design and Actuator Dynamics Identification for a Hybrid Simulation Testing</u> <u>System</u> pp. 4624-4630 M. Russo

Optiimized Model for Energy Aware Location Aided Routing Protocol in MANET pp. 4631-4637 Alhraishawi Taj Aldeen Naser Abdali and Ravie Chandren Muniyandi

Drying Processes of Wet Materials: Environmental Problem and Choice of the Theoretical, Circuitry and Experimental Directions of their Solutions pp. 4638-4643 V.V. Ryzhakov and A.O. Holudeneva

<u>Working Out of an Analytical Model of an Axial Bearing Taking into Account Dependence of</u> <u>Viscous Characteristics of Micropolar Lubrication on Pressure and Temperature</u> pp. 4644-4650

Elena Olegovna Lagunova, Murman Aleksandrovich Mukutadze and Konstantin Sergeevich Solop

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation pp. 4651-4657

Abdullah A. Alghamdi and Yusuf A. Al-Turki

Application of Data Mining Techniques for the Development of 3D Laser Scan Data Management Program

pp. 4658-4662 Choi, Seung Pil, Shin, Moon Seung, Yang, In Tae and Acharya and Tri Dev

Numerical Investigation of a Liquid-Gas Ejector in Marine Ships

pp. 4663-4674 Mohammed Esmail Alshebani, Khaled Alawadhi, Abdulwahab A. Alnaqi and Alaa Ahmed Saker

<u>Microstructural Characteristics and Mechanical Properties of Heat Treated High-Cr White</u> <u>Cast Iron Alloys</u>

pp. 4675-4686 Kh. Abdel-Aziz, M. El-Shennawy and Adel A. Omar

Study on Characteristic of Laterite Soil with Lime Stabilization as a Road Foundation

pp. 4687-4693 Zubair Saing, Lawalenna Samang, Tri Harianto and Johannes Patanduk

<u>Comparative Analysis for Strategic Minimization of the Interference in Small Cell LTE</u> <u>Networks</u>

pp. 4694-4698 Salah Boubkar Salah, Prinu.C.Philip, Rajeev Paulus and A.K.Jaiswal

Performance of Laterite Soil Stabilized with Lime and Cement as a Road Foundation

pp. 4699-4707 Yohanis Tulak Todingrara, M.W. Tjaronge, Tri Harianto and Muhammad Ramli

An Energy Efficient Scheme for Detecting Redundant Readings in Cluster-based Model of Integrated RFID and Wireless Sensor Networks

pp. 4708-4722 Dongcheon Shin and Seikwon Park

Analysis on Multiple Hidden Layer Complexity of BPNN

pp. 4723-4728 Stuti Asthana, Dinesh Goyal and Amitkant Pandit

One Stage Production of Superconducting MgB2 and Hybrid Power Transmission Lines by the Hot Shock Wave Consolidation Technology pp. 4729-4734

T. Gegechkori, B. Godibadze, V. Peikrishvili, G. Mamniashvili and A. Peikrishvili

A Preliminary Cut-off Indoor Positioning Scheme considering the Reference Points with the

Same Signal Similarity pp. 4735-4740

Dongjun Kim and Jooyoung Son

Helical Antenna Design for Image Transfer

pp. 4741-4746 Stanislav Kovar, Hana Urbancokova, Jan Valouch, Milan Adamek and Vaclav Mach

[UP]

© All rights are reserved with **Research India Publications** <u>Contact</u> **Home** Journals

International Journal of Applied Engineering Research

ISSN 0973-4562

Editor-in-chief:

Prof. Ir. Dr. Mohd. Sapuan Salit Head, Department of Mechanical and Manufacturing Engineering Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Editorial Board Members:

Zaki Ahmad, Saudi Arabia Shigeru Aoki, Japan Sayavur I. Bakhtiyarov, USA Ching-Yao Chen, Taiwan B.T.F. Chung, USA Nihad Dib, Jordan Mohammed Salifu, Ghana M.R. Eslami, Iran F. Hayati, UAE Naser S. Al-Huniti, Jordan S.Z. Kassab, Egypt Bashar El-Khasawneh, Jordan Kazuhiko Kudo, Japan A. A. Mowlavi, Iran. H.M. Omar, Saudi Arabia HuiheQIU, Hong Kong D. Ramkrishna, USA Ismail Shahin, United Arab Emirates S.A. Soliman, Qatar H.H. El-Tamaly, Egypt. B.M. Vaglieco, Italy Guo-Xiang Wang, USA Mohamed Younes, UAE Samir Medik, Saudi Arabia Adel Taha Mohamed Abbas, Saudi Arabia Prof DrZulkifliYusop, Malaysia Abdul RazakRehmat, Malaysia Fahd A. Alturki, Saudi Arabia Zeeshan Nawaz, KSA. M. VenkataRamana, India DamodarMaity, India GiriprasathGururajan, USA.

Rajeev Ahuja, Sweden Osama Badr, Qatar FatmaAbou-Chadi, Egypt G.Q. Chen, China Tarig Darabseh, Jordan Marcelo J.S. De Lemos, Brazil Dimitris Drikakis, United Kingdom A.S. Al-Harthy, Australia. Annette Bussmann-Holder, Germany M.A.K. Jaradat, Jordan M.Y. Khalil, Egypt Y.A. Khulief, KSA A. A. Mohamad IhabObaidat, UAE K.K. Pathak, India K. R. Rajagopal, U.S.A. Allan Runstedtler, Canada Ashraf Shikdar, Oman JinHo Song, Korea Bassam A. Abu-Nabah, USA Dimitri V. Val, Israel HuiminXie, China Ahmed Sahin, Saudi Arabia Meamer El Nakla,KSA Wan Aizan Wan Abd Rahman, Malaysia TachtouchBourhan, Saudi Arabia M. A. Habib, Saudi Arabia. Prof. Abdullah M. Al-Shaalan, Saudi Arabia Mir Iqbal Faheem, India Srinivas Mantha, India. SellakkuttiRajendran, Singapore Ram Shanmugam, USA.

Published by

RIP Research India Publications

Head Office: B-2/84, Ground Floor, Rohini Sector-16, Delhi-110089, INDIA Tel No.: 91-11-65394240 Fax No.: +91-011-27297815 Website: www.ripublication.comE-mail: info@ripublication.com

Editorial Board Members

Zaki Ahmad, Saudi Arabia Rajeev Ahuja, Sweden Shigeru Aoki, Japan Osama Badr, Qatar Sayavur I. Bakhtiyarov, USA Fatma Abou-Chadi, Egypt Ching-Yao Chen, Taiwan G.Q. Chen, China B.T.F. Chung, USA Tariq Darabseh, Jordan Nihad Dib, Jordan Marcelo J.S. De Lemos, Brazil Mohammed Salifu, GHANA D. Drikakis, United Kingdom M.R. Eslami, Iran A.S. Al-Harthy, Australia F. Havati, UAE A. Bussmann-Holder, Germany Naser S. Al-Huniti, JORDAN M.A.K. Jaradat, Jordan S.Z. Kassab, Egypt M.Y. Khalil, Egypt Bashar El-Khasawneh, Jordan Y.A. Khulief, Dhahran Kazuhiko Kudo, Japan A. A. Mohamad. A. A. Mowlavi, Iran Ihab Obaidat, UAE H.M. Omar, Saudi Arabia K.K. Pathak, India Huihe QIU, Hong Kong K. R. Rajagopal, U.S.A D. Ramkrishna, USA Allan Runstedtler, Canada Ismail S., United Arab Emirates Ashraf Shikdar, Oman S.A. Soliman, Qatar JinHo Song, Korea H.H. El-Tamaly, Egypt Bassam A. Abu-Nabah, USA B.M. Vaglieco, Naplesitaly Dimitri V. Val, Israel Guo-Xiang Wang, USA Huimin Xie, China Mohamed Younes, UAE Ahmed Sahin, Saudi Arabia Samir Medik, Saudi Arabia Meamer El Nakla, KSA A.T. M. Abbas, Saudi Arabia W. Wan Abd Rahman, Malaysia Prof. Dr Zulkifli Yusop, Malaysia T. Bourhan, Saudi Arabia Abdul Razak Rehmat, Malaysia M. A. Habib, Saudi Arabia Fahd A. Alturki, Saudi Arabia A. M. Al-Shaalan, Saudi Arabia Mir Igbal Faheem, India M. Venkata Ramana, India Srinivas Mantha, India. Damodar Maity, India S. Rajendran, Singapore Giriprasath Gururajan, USA Ram Shanmugam, USA M. Lugman, Saudi Arabia

H

H

H

SCOPUS Indexed Journal

International Journal of Applied Engineering Research (IJAER)

Homepage: http://www.ripublication.com/ijaer.htm

Print ISSN-0973-4562 Online ISSN-1087-1090

Dear Colleagues,

We would like to invite you to submit manuscripts of your original papers, for possible publication in International Journal of Applied Engineering Research (IJAER).

The International Journal of Applied Engineering Research (IJAER) is an international research journal, which publishes top-level work from all areas of Engineering Research and their application including Mechanical, Civil, Electrical, Chemical, Electronics, Mathematics and Geological etc. Researchers in all technology and engineering fields are encouraged to contribute articles based on recent research. Journal publishes research articles and reviews within the whole field of Engineering Research, and it will continue to provide information on the latest trends and developments in this ever-expanding subject. More information on the journal and the publishing process can be obtained at journal homepage: www.ripublication.com/ijaer.htm

Submission: Authors are requested to submit their papers electronically to submit@ripublication.com with mention journal title (IJAER) in subject line.

Submit your papers by email at submit@ripublication.com

Our other International Journal which are indexed in SCOPUS International Journal of Oceans and Oceanography International Journal of Applied Environmental Sciences International Journal of Applied Chemistry Global Journal of Pure and Applied Mathematics

ISSN 0973-2667 ISSN 0973-6077 ISSN 0973-1792 ISSN 0973-1768

Author benefits:

The benefits of publishing in International Journal of Applied Engineering Research (IJAER) includes:

- Fast publication times: your paper will appear online as soon as it is ready, in advance of
 print version (review time of paper is 1-2 weeks)
- · Excellent editorial standards
- · Access free on-line issue of journal for one year
- · A rigorous, fast and constructive peer review process
- All abstracts and full text available free on-line to all main universities/institutions. Worldwide
 ensures promotion to the widest possible audience.

We shall be glad to receive your technical contributions at your earliest convenience. Please publicize this journal amongst your colleagues for possible contribution and subscription.

With kind regards, Editor-in-chief International Journal of Applied Engineering Research Research India Publications Head Office: B-2/84, Ground Floor, Rohini Sector-16, Delhi-110 089 (INDIA) Phone: +91-11-65394240, +91-11-27893171 • Fax: +91-11-27297815 Website: www.ripublication.com • E-mail: info@ripublication.com

							d by scimago: 🛄	I SCIMAGO INSTITUTIONS R	ANKINGS
SJR	Scimago Journal & C	Country Rai	ık				Enter Journal Title, I	SSN or Publisher Name	Q
		Home	Journal Rankings	Country Rankings	Viz Tools	Help	About Us		

International Journal of Applied Engineering Research 3

Discontinued in Scopus as of 2017

COUNTRY India India Image: Universities and research institutions in India	SUBJECT AREA AND CATEGORY Engineering Engineering (miscellaneous)
PUBLISHER	H-INDEX
Research India Publications	44
PUBLICATION TYPE	ISSN
Journals	09734562, 09739769
COVERAGE 2009, 2011-2018	

SCOPE

Information not localized

$\ensuremath{\bigcirc}$ Join the conversation about this journal

communicate and make sense of data with our new data visualization tool.

Metrics based on Scopus® data as of April 2022

Ravi Bhramaramba 4 weeks ago

My article was published in International Journal of Applied Engineering and Research in 2015. Can you tell me the Quarter this Journal belongs to?

Thanks and regards

Prof. R. Bhramaramba

K reply

Melanie Ortiz 4 weeks ago

SCImago Team

Dear Ravi, thank you very much for your request. You can consult that information just above. Best Regards, SCImago Team

DI

Dr.D.Abitha kumari 8 months ago

Dear mam, I published two articles in International Journal of Applied Engineering Research at 2015, one article indexed in Scopus, another article is not indexed in Scopus, Why? "An Enhanced Queuing System for Multiple Mobile Elements in Wireless Sensor Network", International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.20 (2015)pp: 16019- 16023, this article indexed in Scopus.

"An Optimal Time Interval Selection and Authenticating Primary User Signal for Cognitive Radio System" International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.1 (2015) pp. 835-839, this article is not indexed in Scopus.

K reply

Melanie Ortiz 8 months ago

SCImago Team

Dear Dr.D.Abitha,

thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you contact Scopus support team:

https://service.elsevier.com/app/answers/detail/a_id/14883/kw/scimago/supporthub/sc opus/

Best Regards, SCImago Team

Maula 2 years ago

I would like to ask:

It mentioned discontinue as 2017. However the Quartil is still running and improving from Q4-Q3 and in 2019 is in Q2. Does it mean that it's still in Scopus up to now?

(reply

Melanie Ortiz 2 years ago

Dear Maula,

Thank you for contacting us.

The SJR reflects the data that Scopus sends us annually. The SJR is calculated for the last year, although all the information calculated for previous years can be consulted on our website. Despite the fact that a journal no longer appears in Scopus, as long as SCImago continues to receive data from Scopus related to the Citation Window (up to 3 years, necessary to calculate the SJR), the scientometric indicators are still being calculated.

Best Regards, SCImago Team

Firas Mohammed Ali 2 years ago

Dear Authors,

Actually, this Indian publisher is predatory and is included in Beal's black list of faking journals. It targets the money of the authors rather than the quality of their work. Therefore, it was removed from the Scopus indexing. With best regards.

reply

Miriam Edith 2 years ago

Today February 2, 2021, I checked the list that comments and the magazine "International Journal of Applied Engineering Research" does not appear.

Dear Firas, thanks for your participation! Best Regards, SCImago Team

Melanie Ortiz 2 years ago

SCImago Team

Soheir Ghonaim 2 years ago

Dear Sir, I have paper , I would like to publish it with you . How much money do you take ? How many days it will take for publish? Do you have Scopus of Thomson Reuters?

K reply

Melanie Ortiz 2 years ago

SCImago Team

Dear Soheir,

thank you for contacting us.

We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journal's editorial staff , so they could inform you more deeply. Best Regards, SCImago Team

S.DINESHKUMAR 3 years ago

I am need to apply to this journal. If it is available in updated list?

K reply

Dear Dineshkumar,

thank you for contacting us. We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you to visit the journal's homepage or contact the journal's editorial staff , so they could inform you more deeply. Best Regards, SCImago Team

R rama 3 years ago

is this journal in scopus indexed.it seems there is a cancellation for some period.please clarify

• reply

pulareddy 3 years ago

concluded that it was not a scopus publisher from 2017 onwards further deatils could find at https://www.ripublication.com/ijaer.htm

Melanie Ortiz 3 years ago

Dear Rama, thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you to consult the Scopus database directly. Remember that the SJR is a static image of a database (Scopus) which is changing every day. Best regards, SCImago Team

Dr. Mohd 3 years ago

Does this Journal indixed in Scopus or still indixed as I saw that it's ongoing till 2018! Please advice. Thank you and Kind regards

reply

Melanie Ortiz 3 years ago

SCImago Team

SCImado Team

Dear Mohd, thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you to consult the Scopus database directly. Remember that the SJR is a static image of a database (Scopus) which is changing every day. Best regards, SCImago Team

Jobin Jose 3 years ago

I have published a paper in International Journal of Applied Engineering Research. But my designation written in the paper is wrong. Is it possible to correct it?

K reply

Melanie Ortiz 3 years ago

SCImago Team

Dear Jobin, thank you for contacting us. Sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you to contact the journal's editorial staff , so they could inform you more deeply. Best Regards, SCImago Team

Manjunath 3 years ago

Dear Professor, as i am looking for journal which does not charge anything for article. Hope this journal does not have any Article Processing Charges or Publication Fee. Clarify this please.

K reply

Melanie Ortiz 3 years ago

SCImago Team

Dear user,

thank you for contacting us.

Sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus.

Unfortunately, we cannot help you with your request, we suggest you to visit the journal's homepage or contact the journal's editorial staff , so they could inform you more deeply. You can see the updated journal's information just above .

Best Regards, SCImago Team

Nawaraj Sanjel 3 years ago

Dear / editor

What do you mean by 1 Coverage : 2011-2017 (cancelled) and 2. coverage : 2013 ongoing

Regards,

Nawaraj

K reply

Elena Corera 3 years ago

Dear Nawaraj, thank you very much for your participation. Our data comes from Scopus/Elsevier, which offers an annual copy of their database. We understand that since the date indicated by Scopus/Elsevier the journal is no longer indexed in its database. While the citation window is still active, we can show indicators of the journal. Best Regards, SCImago Team

alhassan 4 years ago

Dear / editor I need to ask about the difference between :

1. Coverage : 2011-2017 (cancelled) and 2. coverage : 2013 ongoing

thanks

K reply

Pham Viet Hung 4 years ago

I need IJAER manuscript (MS word file)

reply

Ann Vasyukova 4 years ago

You can publish a research article in your magazine? What are the requirements for the article?

Thank you.

Ann

reply

Elena Corera 4 years ago

Dear Ann Vasyukova,

Please, check comments below.

Best regards, SCImago Team

Weal 4 years ago

I'm wondering about the cost of submission and publishing, is it free?

K reply

Elena Corera 4 years ago

Dear Weal,

thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you check author's instructions in journal website. You can find that information in SJR website https://www.scimagojr.com

Best Regards, SCImago Team

W

What is the Impact Factor of IJAER? 4 years ago

I am going to publish my research work in this journal. So, I need information on Imafact Factor.

k reply

chris_rj 4 years ago

in coverage, it says cancelled since 2017.so dont send your manuscript.. moreover it indicates Q3 for this.. go for journals which hav Q1 and Q2..

Elena Corera 4 years ago

SCImago Team

SCImago Team

Dear user, SCImago Journal and Country Rank uses Scopus data, our impact indicator is the SJR. Check our page to locate the journal. We suggest you consult the Journal Citation Report for other indicators (like Impact Factor) with a Web of Science data source. Best Regards, SCImago Team

Elena Corera 4 years ago

Dear Pham CAo, the publication of articles of 2018 is not over yet (we are in September), and much less it has been possible to cite unpublished articles. The 2018 indicators will not be available until June 2019. We can not see what will happen in the future with this journal. SCImago receives the data from Scopus / Elsevier annually and does not have the authority to include, exclude or modify the data provided by Scopus. Best Regards, SCImago Team

SCImago Team

SCImago Team

N

Nader Farouk 4 years ago

I'd like to ask why journal coverage canceled.is something wrong with it

K reply

Elena Corera 4 years ago

Dear user,

thank you very much for your comment. Unfortunately, we cannot help you with your request, we suggest you to contact the journal directly.

Best Regards, SCImago Team

Sulaiman Alfadul 4 years ago

International Journal of Applied Engineering Research is still in your web until now>

K reply

chris_rj 4 years ago

see the coverage.. it says 2011 to 2017.. which means its no longer part of this database.. also it indicates Q3.. go for journals with Q1 and Q2

Hasan Saad 4 years ago

Dear Sir, I have paper , I would like to publish it with you . How can I submit ? How much money do you take ? How many days it will take for publish?

Yours Sincerely,

• reply

Giap 4 years ago

How many magazines International Journal of Applied Engineering Research a year?

reply

Elena Corera 4 years ago

Dear Giap, we suggest you contact the journal directly. Best Regards, SCImago Team

adnan 4 years ago good afternoon

it is very important for me knowing the impact factor of this journal

4	rophy
	repry

Hasan Saad 4 years ago

Dear Sir, I have paper , I would like to publish it with you . How much money do you take ? How many days it will take for publish? Do you have Scopus of Thomson Reuters?

Yours Sincerely,

Elena Corera 4 years ago

SCImago Team

Dear Adnan, SJR uses Scopus data, our impact indicator is the SJR. Check our page to locate the journal. We suggest you consult the Journal Citation Report for other indicators with a Web of Science data source. Best Regards, SCImago Team

slamet isworo 4 years ago

please information, whether the International Journal of Applied Engineering Research including journal predatory. because I looked at BEALL'S LIST OF PREDATORY JOURNALS AND PUBLISHERS • International Journal of Advance Engineering and Research Development (IJAERD)

- International Journal of Advanced Engineering Research and Applications (IJA-ERA)
- International Journal of Advanced Engineering Research and Science (IJAERS)
- International Journal of Agriculture and Environmental Research (IJAER)

Please input and corrections

thank you Best regards

K reply

Fahruddin 4 years ago

thats true is International Journal of Applied Engineering Research at BEALL'S LIST OF PREDATORY JOURNALS AND PUBLISHERS

Elena Corera 4 years ago Thanks for the info! SCImago Team

dwi cahyani ratna sari 4 years ago

is IJAER in year 2018 indexed by Scopus? Is IJAER in year 2018 Q3 ? I really need the confirmation from the journal thank you best regards

reply

40	-
	* ATT
71	1

Elena Corera 4 years ago

Dear Dwi, 2018 has not ended, therefore, not all articles in the journal have been published, nor many cited. It is impossible to know which quartile will be placed in 2018. Best Regards, SCImago Team

S

susan 4 years ago

Can any one comment about the (cancelled) coverage of this journal?

K reply

Elena Corera 4 years ago

SCImago Team

Dear Susan, our data come from Elsevier, which offers an annual copy of your database. We understand that since the date indicated by Scopus the journal is no longer indexed in its database. Best Regards, SCImago Team

Yemi 4 years ago

Today being 23rd July, 2018, what is the scopus-indexed status of this controversial journal?

K reply

Elena Corera 4 years ago

SCImago Team

Dear Yemi, we suggest that you consult the Scopus database directly. Remember that the SJR is a static image of a database (Scopus) that changes daily. Best regards,

Leave a comment		
Name		
Email (will not be published)		
l'm not a robot	reCAPTCHA Privacy - Terms	
Submit		

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

EST MODUS IN REBUS

Edit Cookie Consent

Scopus Preview Source details		5	Check whether you of access Scopus remo through your institu Maybe later Chec	× can tely ition
International Journal of Applied Eng Scopus coverage years: 2009, from 2011 to 2018	ineering Research		0.2	
(coverage discontinued in Scopus) Publisher: Research India Publications ISSN: 0973-4562 E-ISSN: 0973-9769			sjr 2019 0.175	٥
Subject area: (Engineering: General Engineering) Source type: Journal View all documents > Set document alert I Save to so	urce list Source Homepage		SNIP 2021 1.262	(j)
CiteScore CiteScore rank & trend Scopus conten	t coverage			
i Improved CiteScore methodology CiteScore 2016 counts the citations received in 2013-2016 papers published in 2013-2016, and divides this by the nu	to articles, reviews, conference papers, book chapters and data mber of publications published in 2013-2016. Learn more >			×
CiteScore 2016 $0.2 = \frac{2,609 \text{ Citations } 2013 - 2016}{12,165 \text{ Documents } 2013 - 2016}$ Calculated on 01 May, 2017				
CiteScore rank 2016 ()				
Engineering General Engineering #237/269 12th	-			
view Clescore methodology / Clescore FAQ / Add Clescore	to your site &			
About Scopus	Language	Customer Serv	ice	
What is Scopus Content coverage Scopus blog Scopus API Privacy matters	日本語版を表示する 查看简体中文版本 查看繁體中文版本 Просмотр версии на русском языке	Help Tutorials Contact us		

ELSEVIER

Terms and conditions \urcorner Privacy policy \urcorner

Copyright \bigcirc Elsevier B.V \neg . All rights reserved. Scopus[®] is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \neg .

Calculation Analysis of Power Losses on the Medium Voltage Feeders and Distribution Transformers

Waluyo¹, Aulia Nur Fahdiyalhaq¹, Siti Saodah²

¹Departmen of Electrical Engineering, Institut Teknologi Nasional (ITENAS) Bandung, Jl. PHH. Mustafa No. 23 Bandung 40124 Indonesia.

²Department of Energy Conversion, Politeknik Negeri Bandung (POLBAN), Jl. Gegerkalong Hilir, Ciwaruga, Bandung Barat, 40559, Indonesia.

²Orcid: 55604930700

Abstract

With the increasing electric power demand, the power losses will also rise. Thus, its losses are need to be calculated accurately and become one of most important things that need to be considered in the expansion of electrical line.

This research served the method to calculate the power losses in medium voltage power distribution 20 kV includes with the result according to the load curve in every distribution transformer. The losses on the medium voltage line were calculated according to the current in the line, and the losses in transformer were calculated according to the loads those change every time. The calculated sample of feeder was taken from the power substation focused on UZB line. The loss calculations were also used by using the simulation, so that the calculations could be compared each other.

The loss result in the transformers had the biggest one, that was 5% of transformer capacity, and the biggest power loss in transformers was occurred in ALTA distribution transformer, as 5.8005% and the lowest was occurred in GKSI distribution transformer, as 0.3158%. Thus, the result could be considered to plan the electrical power distribution because they had some impact in investment.

Keywords: power loss, energy loss, medium voltage feeder, distribution transformer, distribution transformer

INTRODUCTION

To meet the electricity demand of society in a region, it is need a distribution system of plant to the consumers. The electric power distribution system that relates directly to consumers is contained in the distribution system. Therefore, the distribution system has an important role in the distribution of electrical energy to consumers.

In the distribution of electrical energy, the continuity of proper service is necessary to consumers. This will affect the reliability of system and lead to blackouts when the system reliability is not proper, so that the consumers will feel be aggrieved. To overcome this case, the system must expand the distribution network, and one of the criteria that must be met, such as high efficiency, without ignoring the economic aspect. The high efficiency will be achieved if the energy loss can be minimized. Currently, the company is expanding the distribution network system to improve the service needs due to increasing load, the losses that occur in the network distribution system must be taken into consideration, both in planning and in operation. It will affect the cost of investment. By knowing the power loss, an enabling research was carried out on the possibility of additional investments to reduce the losses.

On the basis for the ideas, it was intended to conduct the research on power losses in the distribution network system. Therefore, it was captured the calculation analysis of power losses in the feeder on the medium voltage side, including the distribution transformers.

LITERATURE REVIEW

The losses in distribution lines are caused by line conductor losses and transformer (copper and core) losses. The losses could be reduced as possible and could be estimated. They affect voltage profiles [1-34].

Generally it was used capacitor banks for improving power factors and reducing losses [35, 36]. However, they generated harmonics, although not so high for additional losses [37]. The unbalanced and location loads would affect the feeder losses and voltage drop [38]. The regulatory authorities' penalty system would ensure better service standards for customers [39]. Power losses were also occurred in renewable energy generation, such as wind farms [40-42]. Power losses were significantly occurred in power and distribution transformers and they should be reduced as well as harmonics and unbalances [43-77].

The objectives of research in this study were to investigate the power losses in the feeder at the substation taking into account the loading curve and to provide a recommendation to minimize the losses on the network. It was limited the scope of discussion, namely the research was only used one feeder that was originated from the substation and the power loss calculations of in the distribution transformers were core and copper losses.

The states of the art of research were to calculate the power losses in the medium distribution lines and in the medium voltage sides of distribution transformer copper as well as core losses. These computations were not only in rating condition, as usual where relatively simple, but as far as in real condition in sites according to the measurement results. The computation results were compared to the simulation results. Finally, they could be analyzed by those comparisons.

METHOD OF DISTRIBUTION SYSTEM POWER LOSS CALCULATION

There were some steps to undertake the problem analysis. The process of analysis in this study was divided into several stages described schematically and systematically as shown in Figure 1.

Figure 1. Flowchart of research

The next stage after the obtained data was necessary to perform data processing to determine the power losses on each phase for each distribution transformer. The steps of calculations can be described in Figure 2, which shows the power loss calculation steps along with the used formulae.

Figure 2. Steps of power loss calculations

The load data on the medium voltage side were obtained by the transformations of load parameter values on the low voltage sides and in the transformer rated voltage ratios.

$$I'_{MV} = \frac{V_{LV}}{V_{MV}} I_{LV}$$
(1)

$$V'_{MV} = \frac{V_{HV}}{V_{LV}} V_{LV}$$
(2)

$$S'_{MV} = V'_{MV} I'_{MV}$$
 (3)

Where I_{MV} ', V_{MV} ', S_{MV} ', I_{MV} , V_{MV} , S_{MV} , V_{LV} were current load on the medium voltage side (A), voltage on the load side of medium voltage (V), power load on the medium voltage (kVA), current in the medium voltage side (A), voltage at 20 kV medium voltage (V), power at the side of medium voltage (kVA) and secondary 400 V voltage transformer (V) respectively.

The transformer capacity data and brands were acquired from the company, while the data regarding the amount of iron loss and copper loss of transformers were obtained by using the datasheets of transformers and the standard, where these losses were for the three-phase transformers.

If S_T , P_{Fe3ph} , P_{CU3ph} were capacity transformer (kVA), iron loss (watt) and copper loss (watt) respectively, the iron loss per phase (P_{Fe1ph}) was

$$P_{Fe1ph} = \frac{P_{Fe3ph}}{3} \tag{4}$$

the copper loss per phase (P_{Cu1ph}) was

$$P_{Cu1ph} = \frac{P_{Cu3ph}}{3} \tag{5}$$

the transformer nominal current (I_n)

$$I_n = \frac{S_T}{\sqrt{3} V_{MV}} \tag{6}$$

the resistance of copper per phase (R_{Cu})

$$R_{Cu} = \frac{P_{Cu1ph}}{I_n^2} \tag{7}$$

The transformer loss was calculated per phase at each distribution transformers and on any encumbrances. The iron losses were assumed to be constant, while the copper losses depended on the load or current. The iron loss was as P_{Fe1ph} , so that the loss of copper was

$$P_{Cu} = I_{MV}^{'} R_{Cu}$$
 (8)

The total transformer losses (P_{TL}) was

$$P_{TL} = P_{Fe1ph} + P_{cu1ph} \tag{9}$$

The apparent transformers total loss (kVA) was

$$S_{LT} = \frac{P_{LT}}{\cos\varphi} \tag{10}$$

The transformer efficiency was

$$\eta = \frac{P}{P + P_{TL}} \times 100\% \tag{11}$$

The apparent power on the medium voltage side (kVA) was

$$S_{MV} = S_{MV} + S_T \tag{12}$$

The current in medium voltage side was

$$I_{MV} = \frac{S_{MV}}{V_{MV}} \tag{13}$$

The cable or conductor data were obtained from the company, including the type, length, resistance and reactance. The active power loss of conductors was

$$P_{LL} = I_{MV}^2 r l \tag{14}$$

The apparent power loss of conductors was

$$S_{LL} = \frac{P_{LL}}{\cos \varphi} \tag{15}$$

The efficiency line was

$$\eta_{LL} = \frac{P_{MV} - P_{LL}}{P_{MV}} \times 100\%$$
(16)

The total losses were the transformer losses and distribution line loss between X and Y as

$$P_{LTot} = P_{LT} + P_{LL} \tag{17}$$

The power transformer losses could be written by the following equation as

$$P_{LT} = P_{Fe} + P_{Cu} \tag{18}$$

DATA, RESULTS AND DISCUSSION

The used networks in the calculation of power losses were the medium voltage of UZB feeder, using the medium voltage **cable**, as shown in Figure 3.

Figure 3. Network system feeder of UZB

Table 1 list the data of conductor feeder UZB that be investigated. The longest line was between PGG and OGA, as 2,402 m and the shortest one was between PRA B and ALTA as 32 m, where the resistances were 0.124 Ω /km for all feeder conductors.

Table 1: Data of conductor feeder UZB

Na	Distribution transforme		Longth (m)
INO	Beginning	End	Length (m)
1	Н	LIKA	411
2	LIKA	LIK	347
3	LIK	PRA A	1070
4	PRA A	PRA B	60
5	PRA B	ALTA	32
6	ALTA	CWI	254
7	CWI	VTX	483
8	VTX	GKSI	86
9	GKSI	PCN	409
10	PCN	MSG	273
11	MSG	PGG	275
12	PGG	OGA	2402

The distribution transformer data were necessary to calculate power losses in the distribution transformers for each load condition. The distribution transformer data can be shown in Table 2. The table lists that the highest transformer capacity was 1 300 kVA, as PRA A, GKSI, MSG and OGA distribution transformers. The copper resistances and the power factors were assumed 0.02 Ω and 0.8 lagging respectively.

Table 2: Distribution transformer data for feeder UZB

No	Distribution transformer	Transformer capacity (kVA)	Core loss (Watt)
1	LIKA	250	600
2	LIK	400	930
3	PRA A	630	1300
4	PRA B	400	930
5	ALTA	250	600
6	CWI	400	930
7	VTX	400	930
8	GKSI	630	1300
9	PCN	250	600
10	MSG	630	1300
11	PGG	250	600
12	OGA	630	1300

The load data were the amount of use of electrical load (current), which were obtained by the measurements every distribution transformer. The load data can be seen in Table 3 for LIKA distribution transformer. The highest currents were

occurred in 18:00 and 19:00 o'clocks, as 103 A and 104 A for phase-S, 91 A and 92 A for load data phase-R and phase-T, respectively.

Table 3: Measurement of distribution transformer of LIKA

Hours	Pha	Phase Current (A)			Phase Voltage (V)			
	R	S	Т	R	S	Т		
0:00	87	95	83	223	223	224		
1:00	84	96	84	222	222	221		
2:00	81	93	81	224	224	223		
3:00	80	92	80	225	225	224		
4:00	82	94	82	226	226	225		
5:00	79	91	79	224	224	223		
6:00	83	95	83	226	226	225		
7:00	81	93	81	228	228	227		
8:00	79	91	79	227	227	226		
9:00	82	94	82	226	225	224		
10:00	85	97	85	225	224	223		
11:00	87	99	87	227	226	225		
12:00	87	99	87	227	226	225		
13:00	87	99	87	227	226	225		
14:00	89	101	89	228	227	225		
15:00	85	97	85	224	222	225		
16:00	88	100	88	225	223	222		
17:00	86	98	86	227	225	224		
18:00	91	103	91	231	231	231		
19:00	92	104	92	231	231	231		
20:00	91	99	87	228	228	227		
21:00	86	94	82	229	229	228		
22:00	92	100	88	230	230	229		
23:00	90	98	86	225	225	224		

Table 4 lists the load data for LIK distribution transformer. The highest currents were occurred in 18:00 and 19:00 o'clocks, as 315 A and 316 A for phase-S, 350 A and 351 A for phase-R and 389 A and 390 A for phase-T, respectively.

Table 5 lists the load data for PRA A distribution transformer. The highest currents were occurred in 18:00 and 19:00 o'clocks, as 214 A and 219 A for phase-S, 207 A and 208 A for phase-R and 195 A and 196 A for phase-T, respectively.

Table 5: Load data of c	listribution	transformer	PRA A
-------------------------	--------------	-------------	-------

Hours	Phas	e Curren	t (A)	Phas	Phase Voltage (V)		
-	R	S	Т	R	S	Т	
0:00	346	307	381	223	222	221	
1:00	343	308	382	220	219	218	
2:00	340	305	379	221	220	219	
3:00	339	304	378	222	221	220	
4:00	341	306	380	223	222	221	
5:00	338	303	377	219	218	217	
6:00	342	307	381	220	219	218	
7:00	340	305	379	221	220	219	
8:00	338	303	377	218	217	216	
9:00	341	306	380	216	215	214	
10:00	344	309	383	214	213	212	
11:00	346	311	385	217	216	215	
12:00	346	311	385	217	216	215	
13:00	346	311	385	217	216	215	
14:00	348	313	387	217	216	215	
15:00	344	309	383	217	217	211	
16:00	347	312	386	225	226	226	
17:00	345	310	384	226	227	227	
18:00	350	315	389	212	215	215	
19:00	351	316	390	228	228	228	
20:00	350	311	385	222	221	220	
21:00	345	306	380	223	222	221	
22:00	351	312	386	224	223	222	
23:00	349	310	384	222	221	220	

Hours	Phas	e Current	t (A)	Phas	Phase Voltage (V)		
-	R	S	Т	R	S	Т	
0:00	203	211	187	217	221	222	
1:00	200	212	188	215	219	220	
2:00	197	209	185	216	220	221	
3:00	196	208	184	217	221	222	
4:00	198	210	186	218	222	223	
5:00	195	207	183	214	218	219	
6:00	199	211	187	216	220	221	
7:00	197	209	185	217	221	222	
8:00	195	207	183	215	219	220	
9:00	198	210	186	214	218	219	
10:00	201	213	189	213	217	218	
11:00	203	215	191	216	220	221	
12:00	203	215	191	216	220	221	
13:00	203	215	191	216	220	221	
14:00	205	217	193	218	222	223	
15:00	201	213	189	225	222	223	
16:00	204	216	192	229	229	229	
17:00	202	214	190	229	229	229	
18:00	207	219	195	229	229	229	
19:00	208	220	196	222	221	227	
20:00	207	215	191	215	217	214	
21:00	202	210	186	219	223	224	
22:00	208	216	192	220	224	225	
23:00	206	214	190	216	220	221	

Table 6 lists the load data for PRA B distribution transformer. The highest currents were occurred in 18:00 and 19:00 o'clocks, as 193 A and 194 A for phase-S, 184 A and 185 A for phase-R and 216 A and 217 A for phase-T, respectively. In this distribution transformer, the current in phase-T was higher than that in phase-S.

Table 6: Load data of distribution tra	Insformer PRA B
--	-----------------

.....

and 19:00The highest currents were occurred in 18:00 and 19:00and 185 Ao'clocks, as 133 A and 134 A for phase-S, 126 A and 127 Aactively. Infor phase-R and 193 A and 194 A for phase-T, respectively. Inase-T wasthis distribution transformer, the current in phase-T washigher than that in phase-S.

Table 7: Load data of distribution transformer ALTA
--

Table 7 lists the load data for ALTA distribution transformer.

Hours	Phas	e Curren	t (A)	Phase Voltage (V)		
	R	S	Т	R	S	Т
0:00	180	185	208	226	227	225
1:00	177	186	209	222	223	221
2:00	174	183	206	223	224	222
3:00	173	182	205	224	225	223
4:00	175	184	207	225	226	224
5:00	172	181	204	220	221	219
6:00	176	185	208	222	223	221
7:00	174	183	206	223	224	222
8:00	172	181	204	222	223	221
9:00	175	184	207	221	222	220
10:00	178	187	210	220	221	219
11:00	180	189	212	224	225	223
12:00	180	189	212	224	225	223
13:00	180	189	212	224	225	223
14:00	182	191	214	226	227	225
15:00	178	187	210	217	219	216
16:00	181	190	213	223	221	222
17:00	179	188	211	225	223	224
18:00	184	193	216	231	231	231
19:00	185	194	217	231	231	231
20:00	184	189	212	231	231	231
21:00	179	184	207	223	224	222
22:00	185	190	213	225	226	224
23:00	183	188	211	224	225	223

Hours	Phase Current		(A) Phase Volta			ge (V)	
	R	S	Т	R	S	Т	
0:00	122	129	182	231	231	231	
1:00	119	126	186	229	229	229	
2:00	116	123	183	230	230	230	
3:00	115	122	182	231	231	231	
4:00	117	124	184	232	232	232	
5:00	114	121	181	230	230	230	
6:00	118	125	185	231	231	231	
7:00	116	123	183	231	231	231	
8:00	114	121	181	229	229	229	
9:00	117	124	184	227	227	227	
10:00	120	127	187	225	225	225	
11:00	122	129	189	228	228	228	
12:00	122	129	189	229	229	229	
13:00	122	129	189	230	230	230	
14:00	124	131	191	231	231	231	
15:00	120	127	187	215	214	206	
16:00	123	130	190	225	220	215	
17:00	121	128	188	229	228	220	
18:00	126	133	193	231	231	231	
19:00	127	134	194	231	231	231	
20:00	125	132	192	231	231	231	
21:00	120	127	187	232	232	232	
22:00	126	133	193	233	233	233	
23:00	124	131	191	230	230	230	

Hours

0:00

1:00

Table 8 lists the load data for CWI distribution transformer. The highest currents were occurred at 18:00 o'clock as 205 A, 180 A and 200 A for phase R, S and T respectively, and at 19:00 o'clocks, as 192 A, 169 A and 187 A for phase-S, 126 A and 127 A for phase-R and 193 A and 194 A for phase-T, respectively. In this distribution transformer, the current in phase-R was higher than that in phase-S.

those had higher values than 150 ampere were occurred at 00:00, 01:00, 02:00, 03:00, 05:00, 09:00, 11:00, 18:00 and 22:00, as well as for nearly 150 ampere it was at 23:00 on each phase. Thus, the time range where the current values were high was from 22:00 until 03:00. This case was reasonable because the feeder supplied almost the industry.

R

223.66

221.71

Phase Voltage (V)

S

225.72

223.65

Т

225.32

223.34

Table 9 Load data of distribution transformer VTX

Т

221

203

Phase Current (A)

S

173

161

R

171

155

Hours	Phase Current (A)			Phase Voltage (V)		
	R	S	Т	R	S	Т
0:00	125	108	120	214	213	212
1:00	125	108	120	215	215	21:
2:00	128	113	123	216	216	21
3:00	129	114	124	216	216	21
4:00	127	112	122	216	216	21
5:00	130	115	125	215	215	21
6:00	180	165	175	215	215	21
7:00	180	165	175	215	215	21
8:00	184	169	179	209	209	20
9:00	190	170	185	214	214	21
10:00	196	177	191	218	218	21
11:00	173	150	168	215	215	21
12:00	170	147	165	218	218	21
13:00	167	142	162	218	218	21
14:00	160	138	155	218	218	21
15:00	158	126	153	207	209	20
16:00	168	143	163	228	228	22
17:00	187	173	182	220	220	22
18:00	205	180	200	228	228	22
19:00	192	169	187	228	228	22
20:00	198	179	193	228	228	22
21:00	196	177	191	228	228	22
22:00	176	153	171	225	225	22
23:00	144	128	139	225	225	22

167 212 221.90 2:00 163 223.82 223.38 3:00 153 159 203 223.58 225.48 224.93 140 223.57 225.47 4:00 134 181 224.92 5:00 151 156 197 221.14 223.12 222.82 111 118 157 223.52 225.44 224.98 6:00 127 224.10 7:00 126 172 225.96 225.46 133 221.87 8:00 136 179 223.87 223.36 9:00 150 151 193 220.59 222.57 222.10 10:00 118 122 162 219.52 221.50 221.04 11:00 154 152 196 219.94 221.99 221.54 12:00 121 124 220.42 222.43 221.94 166 121 124 13:00 166 219.95 221.95 221.54 131 14:00 132 174 220.25 222.32 221.89 15:00 137 135 179 219.97 222.11 221.64 16:00 123 122 221.78 223.79 223.33 167 17:00 129 130 171 222.12 224.20 223.85 18:00 154 156 197 220.07 222.37 222.22 19:00 127 132 172 220.01 222.35 222.13 222.71 20:00 128 132 173 220.48 222.50 21:00 131 223.95 126 172 221.93 224.11 22:00 223.11 225.15 224.81 160 160 204 23:00 147 149 193 222.71 224.69 224.28

Table 9 lists the load data for VTX distribution transformer. The high currents, for all R, S and T phases, were distributed in some hours, not only on one or two hour(s). The currents Table 10 lists the load data for GKSI distribution transformer. The highest currents were occurred at 14:00 o'clock as 288.2, 308.6 and 288.4 amperes for phase R, S and T respectively, and at 16:00 o'clocks, as 289, 308.4 and 288.4 amperes for phase-S, phase-R and phase-T, respectively. Thus, in this distribution transformer, the high currents were ocurred in 14:00 and 16:00 o'clocks in ranges. This case was not usual than other ones.

Table 10: Load data of distribution transformer GKSI

Hours	Phas	e Curren	t (A)	Phase Voltage (V)		
	R	S	Т	R	S	Т
0:00	265.4	297.4	277.4	223.55	225.57	225.13
1:00	277.2	298.8	280.0	221.62	223.52	223.12
2:00	262.2	282.6	263.8	221.94	223.79	223.28
3:00	253.6	273.6	254.0	223.30	225.24	224.69
4:00	254.4	274.8	254.8	223.41	225.33	224.79
5:00	193.8	210.4	193.8	221.35	223.30	222.87
6:00	204.4	220.6	202.2	223.25	225.13	224.70
7:00	199.0	214.4	195.8	224.31	226.17	225.63
8:00	193.2	208.2	189.8	222.05	223.97	223.41
9:00	232.6	253.0	232.8	220.96	222.87	222.29
10:00	255.4	273.4	253.6	219.53	221.50	220.94
11:00	274.2	294.2	274.4	219.67	221.68	221.20
12:00	282.6	302.4	283.0	220.53	222.48	221.94
13:00	280.8	302.4	281.0	220.00	221.98	221.48
14:00	288.2	308.6	288.4	220.17	222.19	221.65
15:00	285.2	305.8	285.6	220.18	222.20	221.67
16:00	289.0	308.4	288.4	220.81	222.78	222.23
17:00	278.8	299.8	279.2	222.32	224.33	223.88
18:00	274.6	299.8	279.2	220.02	222.27	222.11
19:00	280.0	305	284.2	219.87	222.12	221.96
20:00	277.8	303	281.4	220.19	222.41	222.19
21:00	274.0	297.8	276.6	221.83	224.00	223.68
22:00	282.6	306.4	285.2	223.76	225.78	225.41
23:00	277.6	298.2	279.2	222.99	224.89	224.45
		••••••	••••••		••••••	

Table 11 lists the load data for PCN distribution transformer. The highest currents were occurred at 00:00 o'clock as 306.8, 319.2 and 358.4 amperes for phase R, S and T respectively, and at 01:00 o'clocks, as 297.2, 310.8 and 350.0 ampere for phase-S, phase-R and phase-T, respectively. Thus, in this distribution transformer, the high currents were ocurred in 00:00 and 01:00 o'clocks in ranges. This case was not usual than other ones.

Hours	Phase	e Curren	t (A)	Phase Voltage (V)		
	R	S	Т	R	S	Т
0:00	306.8	319.2	358.4	223.94	222.25	224.26
1:00	297.2	310.8	350.0	225.22	223.60	225.43
2:00	278.4	292.8	326.0	222.57	221.08	222.89
3:00	294.4	308.8	343.6	223.65	222.24	223.99
4:00	256.4	272.4	307.6	224.29	222.87	224.59
5:00	237.2	245.2	284.8	222.67	221.14	223.04
6:00	141.2	132.8	185.6	223.20	221.62	223.46
7:00	175.6	170.4	226.4	225.06	223.72	225.46
8:00	169.6	164.0	218.4	223.94	222.43	224.20
9:00	132.0	127.6	173.2	222.45	221.00	222.83
10:00	146.8	153.6	193.2	221.01	219.60	221.34
11:00	139.2	144.8	184	220.46	218.93	220.74
12:00	139.6	148.4	187.6	221.25	219.77	221.59
13:00	150.0	160.4	198.8	221.28	219.81	221.67
14:00	143.2	151.6	190.4	221.07	219.52	221.40
15:00	124.4	126.8	166.4	221.31	219.75	221.66
16:00	143.2	151.2	191.6	221.19	219.60	221.50
17:00	149.6	150.8	197.6	223.53	221.96	223.80
18:00	134.4	122.8	171.2	221.75	219.73	221.82
19:00	132.4	120.8	168.8	221.29	219.20	221.31
20:00	135.2	123.6	172.4	221.72	219.70	221.82
21:00	142.8	130.4	183.6	222.48	220.50	222.60
22:00	150.8	138.8	191.6	223.97	222.13	224.12
23:00	155.2	144.4	197.6	224.45	222.86	224.65

Table 11: Load data of distribution transformer PCN

Table 12 lists the load data for PGG distribution transformer. The highest currents were occurred at 18:00 o'clock as 146, 172 and 233 amperes for phase R, S and T respectively, and at 19:00 o'clocks, as 147 A, 173 A and 234 A for phase-S, phase-R and phase-T, respectively.

Table 13 lists the load data for MSG distribution transformer. The high currents were occurred at the range of 8:00 until 15:00 o'clocks, where the current values between 45 and 71 amperes.

Table 12: Load data of distribution transformer PGG

Time	Phas	e Current	t (A)	Phase Voltage (V)		
	R	S	Т	R	S	Т
0:00	142	164	225	221	218	215
1:00	139	165	226	219	216	213
2:00	136	162	223	220	217	214
3:00	135	161	222	221	218	215
4:00	137	163	224	222	219	216
5:00	134	160	221	218	215	212
6:00	138	164	225	219	216	213
7:00	136	162	223	220	217	214
8:00	134	160	221	219	216	213
9:00	137	163	224	218	215	212
10:00	140	166	227	217	214	211
11:00	142	168	229	220	217	214
12:00	142	168	229	220	217	214
13:00	142	168	229	220	217	214
14:00	144	170	231	225	222	214
15:00	140	166	227	230	231	231
16:00	143	169	230	229	229	227
17:00	141	167	228	230	230	228
18:00	146	172	233	231	231	231
19:00	147	173	234	231	231	231
20:00	146	168	229	220	217	214
21:00	141	163	224	222	219	216
22:00	147	169	230	223	220	217
23:00	145	167	228	220	217	214

Hours	Phas	e Curren	t (A)	Phase Voltage (V)		ge (V)
-	R	S	Т	R	S	Т
0:00	29	25	23	222.32	224.34	222.84
1:00	28	27	23	221.07	222.89	221.45
2:00	26	25	22	222.40	224.36	222.78
3:00	27	25	22	222.74	224.72	222.96
4:00	27	25	22	220.87	222.75	221.18
5:00	27	26	21	221.93	223.86	222.27
6:00	27	25	21	223.80	225.75	223.86
7:00	26	24	21	221.89	223.92	222.18
8:00	52	62	53	220.71	222.69	221.02
9:00	46	58	48	219.23	221.30	219.45
10:00	59	71	62	218.72	220.86	219.06
11:00	47	53	48	219.82	221.89	220.16
12:00	49	54	49	219.56	221.67	219.91
13:00	50	56	52	219.46	221.63	219.86
14:00	45	56	50	219.68	221.87	220.19
15:00	45	55	48	219.70	221.88	220.20
16:00	25	22	22	221.77	223.95	222.23
17:00	25	24	22	219.38	221.77	220.47
18:00	27	24	21	219.05	221.42	220.16
19:00	28	26	19	219.46	221.83	220.53
20:00	28	25	20	220.80	223.08	221.74
21:00	28	24	21	222.57	224.68	223.44
22:00	29	25	22	222.99	225.02	223.63
23:00	28	25	22	222.32	224.34	222.84

Table 14 lists the load data for OGA distribution transformer. The highest currents were occurred at 19:00 o'clock as 463 A, 530 A and 568 A for phase R, S and T respectively, for phase-S, phase-R and phase-T, respectively.

 Table 14: Load data of distribution transformer OGA

Time	Phas	se Curren	t (A)	Phas	Phase Voltage (V)	
-	R	S	Т	R	S	Т
0:00	458	521	559	218	218	218
1:00	455	522	560	215	215	215
2:00	452	519	557	216	218	216
3:00	451	518	556	217	219	217
4:00	453	520	558	218	220	218
5:00	450	517	555	215	217	215
6:00	454	521	559	217	215	217
7:00	452	519	557	218	216	218
8:00	450	517	555	216	214	216
9:00	453	520	558	215	213	215
10:00	456	523	561	214	212	214
11:00	458	525	563	217	215	217
12:00	458	525	563	217	215	217
13:00	458	525	563	217	215	217
14:00	460	527	565	219	217	219
15:00	456	523	561	200	204	211
16:00	459	526	564	215	218	215
17:00	457	524	562	216	219	216
18:00	462	529	567	213	210	206
19:00	463	530	568	220	210	213
20:00	462	525	563	222	222	218
21:00	457	520	558	224	224	224
22:00	463	526	564	225	225	225
23:00	461	524	562	220	220	220

Power Loss Calculation on feeder of UZB

On the distribution transformer of ALTA, on 0:00 o'clock, the load data of low voltage side were I_{TR} and V_{TR} as 122 A and 231 V respectively. Thus, the load data of medium voltage side are shown in Table 15.

Table 15: The medium quantity parameters

Parameter	Quantities
I _{TM} '	2.44
V _{TM} '	11 550
S _{TM} '	28.182 kVA
P _{TM} '	22.5465 kW

The distribution transformator data of ALTA were $K_{transf},$ $P_{Fe3phase}$ and R_{Cu} as 250 kVA, 600 watt and 0.02 $\ \Omega$

respectively. Therefore, the iron loss per phase was 200 watt and the core resistance was 666,667 Ω .

The transformer copper loss at the loading $P_{Cu1phase}$ was 0.119072 watt. The transformer iron loss per phase was 200.014 watt. Therefore, the distribution transformer loss was 200.223 watt. Finally, the apparent power loss was 250.028 VA and the efficiency, based on the apparent loss, was 0.88808%.

The apparent power on the medium voltage side S_{TM} was 28.43215 kVA. While, the current on the medium voltage side I_{TM} was 2.4616 A.

The line data between PRA and ALTA were medium voltage power cable, 0.032 km and 0.14 Ω /km. Therefore, the line loss between PRA and ALTA was 0.02715 watt, or 0.0339 VA or 0.00012% of apparent power. The total loss between PRA and ALTA was 200.14615 watt or 250.18 VA.

Table 16 shows the values of power losses in the distribution transformers for feeder UZB. There were not all power losses of transformers could be calculated, because there are some distribution transformers owned by the customer or commonly called the medium voltage customers on UZB feeder.

If a transformer has medium voltage status, then the company only provide power only to the customer and can not see how much power is used on the transformer.

 Table 16: Distribution transformer losses on feeder UZB in one day

		-	
Distribution transformer	Transformer loss (kW)	Transformer capacity (kVA)	Transformer loss (%)
LIKA	15.0048	250	5.7378
LIK	23.3221	400	5.2830
PRA A	32.52431	630	4.7162
PRA B	23.27215	400	5.4818
ALTA	15.0132	250	5.8005
CWI	23.2651	400	5.2162
VTX	23.25	400	0.3812
GKSI	32.5	630	0.3158
PCN	15	250	0.3827
PGG	15.0197	250	5.4478
MSG	23.25	400	0.3812
OGA	32.6592	630	4.5184

To know the values of power losses based on the calculations in the feeder of UZB on any loading for one day, it can be seen in Table 17. The table shows that the total loss as 11.96 kwatt and above were occurred at the range of 16:00 until

22:00 o'clocks. This case was reasonable due to, in this time, usually it was in peak load conditions. Otherwise, the highest percentage was occurred at 5:00 o'clocks, due to in this time, it was the lowest loss.

until 23:00. Nevertheless, the latter was significantly higher than the former. This case was reasonable due to, in the latter time, it was usually peak load occurred.

Table 17: Calculation of losses on	feeder UZB in one day
------------------------------------	-----------------------

Hours	Calculating loads (kWatt)	Calculating transformer loss (kWatt)	Calculating line loss (kWatt)	Total loss (kWatt)	Loss (%)
0:00	941.4	10.96	0.95	11.92	1.27
1:00	929.7	10.96	0.94	11.90	1.28
2:00	925.7	10.96	0.94	11.90	1.29
3:00	926.4	10.96	0.94	11.90	1.28
4:00	936.8	10.96	0.95	11.91	1.27
5:00	913.0	10.96	0.92	11.89	1.30
6:00	958.2	10.96	0.97	11.93	1.24
7:00	954.6	10.96	0.97	11.93	1.25
8:00	939.1	10.96	0.95	11.91	1.27
9:00	949.3	10.96	0.96	11.92	1.26
10:00	960.3	10.96	0.97	11.94	1.24
11:00	966.0	10.96	0.98	11.94	1.24
12:00	966.0	10.96	0.98	11.94	1.24
13:00	964.4	10.96	0.98	11.94	1.24
14:00	974.9	10.96	0.99	11.95	1.23
15:00	930.9	10.96	0.94	11.91	1.28
16:00	984.8	10.96	0.996	11.96	1.21
17:00	992.1	10.96	1.00	11.97	1.21
18:00	1009.8	10.96	1.02	11.99	1.19
19:00	1021.6	10.96	1.03	11.997	1.17
20:00	1003.8	10.96	1.02	11.98	1.19
21:00	989.9	10.96	1.00	11.965	1.21
22:00	1004.2	10.96	1.02	11.98	1.19
23:00	966.9	10.96	0.98	11.94	1.24

Table 18: Simulation of losses on feeder UZB in one day

	Simulating	Simulating	Simulating	Tatal	
Time	loads	transformer	line	Total	Loss
(kW	(kWatt)	loss (kWatt)	loss (kWatt)	(kWatt)	(%)
0:00	987.4	11	1	12	1.22
1:00	975.4	10.7	0.9	11.6	1.19
2:00	970.4	10.7	0.9	11.6	1.20
3:00	972.4	10.7	0.9	11.6	1.19
4:00	981.3	10.9	1	11.9	1.21
5:00	957.3	10.3	0.9	11.2	1.17
6:00	1005.2	10.8	1	11.8	1.17
7:00	1000.3	10.8	1	11.8	1.18
8:00	984.3	10.5	1	11.5	1.17
9:00	994.3	10.5	1	11.5	1.16
10:00	1005.4	10.6	1	11.6	1.15
11:00	1011.3	11.1	1	12.1	1.20
12:00	1011.3	11.1	1	12.1	1.20
13:00	1009.3	11.1	1	12.1	1.20
14:00	1021.3	11.5	1	12.5	1.22
15:00	977.3	10.5	0.9	11.4	1.17
16:00	952.3	11.6	1	12.6	1.32
17:00	1040.3	11.5	1.1	12.6	1.21
18:00	1055.3	11.5	1.1	12.6	1.20
19:00	1069.3	12.1	1.1	13.2	1.23
20:00	1051.3	11.7	1.1	12.8	1.22
21:00	1037.3	11.2	1.1	12.3	1.19
22:00	1050.3	11.9	1.1	13	1.24
23:00	1013.3	11.4	1	12.4	1.22

Table 18 lists the results of loss simulation in the feeder of UZB. The total losses those higher than 12 kwatt were occurred in the ranges from 11:00 until 14:00 and from 16:00

Figure 4 shows the chart of load comparison between the calculation and the simulation results. Although experienced

little difference between them, both charts had similar behavior, where the peak load range was from 16:00 until 20:00.

Figure 4: Load comparison charts between the calculation and simulation

Based on the chart in Figure 4, the full load was occurred at 19:00 as 1021.592 watt. Nevertheless, it is shown in the simulation, it was occurred at 19.00 as 1069.29 watt.

Figure 5 shows the chart of transformer loss comparison between the calculation and the simulation results. Although experienced very small difference between them, both charts had similar behavior, where the peak load range was from 16:00 until 20:00.

Figure 5: Transformer loss comparison charts between the calculation and simulation

From the calculation results, it was obtained by the average distribution transformer losses during the first day amounted to 10.96 kW. While the results of simulation was 11.06 kW for the same load condition. Thus, the difference between the calculation and the simulation was 0.1 kW.

Figure 6 shows the chart of line loss comparison between the calculation and the simulation results. Although experienced very small difference between them, both charts had similar

behavior, where the peak load range was from 16:00 until 21:00.

Figure 6: Line loss comparison charts between the calculation and simulation

Figure 7 shows the chart of total line loss comparison between the calculation and the simulation results. This loss consisted of both transformer loss and line loss. Although experienced very small difference between them, both charts had similar behavior, where the peak load range was from 16:00 until 21:00.

Figure 7: Total line loss comparison charts between the calculation and simulation

The line average power loss during one was 0.97 kW. While, the results of simulation for the same feeder and same load was obtained as 1 kW. Thus, the difference between the calculation and simulation results was equal to 0.03 kW.

From the tables, it is shown that the power losses in the transformers and the lines followed the shape of curve load. Thus, the greater the load, the power losses would be greater.

From the calculation results, it was obtained the average power losses, during one day, amounted to 11.93 kW. While, the results of simulation, for the case of feeders with the same load condition was obtained the yield of 12.07 kW. Thus, the

difference between the calculation and the simulation was 0.13 kW.

For the energy loss in the feeder UZB during one day was obtained by the calculation amounted to 298.42 kWh, and for one month was 8.96 MWh.

Figure 8: The load simulation results

CONCLUSION

From the calculation results, it was obtained that power losses in the conductor had little value, to the line feeder UZB, which was 0.48 kW. This was caused by the used conductor of UZB feeder had the small resistance of 0.124 Ω /km, and the distance between distribution transformers was short, under 1 km.

While, the transformer power losses had considerable value, above 5% of transformer capacity. The greatest power loss was in the transformer of ALTA distribution transformer, as 5.8005% and the lowest was occurred in GKSI distribution transformer, as 0.3158%.

The maximum limit of losses to be achieved by the company was 10% for the no-load loss and + 5% for the total loss. According to the total calculation, the loss in the transformer had met the standard as 5%.

By the calculation result, it was obtained the feeder power loss for 1 day amounted to 11.93 kW. While, for same feeder and same load condition, the result of simulation was obtained as 12.07 kW. Thus, the difference between the calculation and the simulation power was 0.13 kW.

By the calculation results, it was obtained the transformer loss for 1 day amounted to 10.96 kW. While, for same feeder and same load condition, the simulation result was obtained the yield of 11.06 kW. Thus, the difference between the calculation and the simulation powers was 0.1 kW.

The line power loss during the one day was 0.97 kW. While, for same feeder and same load condition, the result of simulation was obtained as 1 kW. Thus, the difference between the calculation and the simulation was equal to 0.03 kW.

The feeder UZB energy loss during the one day was obtained by the calculation amounted to 298.42 kWh, and for one month was 8.96 MWh.

The losses contained in the line feeder of UZB were line loss and distribution loss. Furthermore, they also were identical to energy losses.

On the simulation, it could be known that the power equilibrium on the medium voltage network system, has been met. It can be seen that the source of power supply was 1003 kW and 620 kVAR, and the power on the load was 995.3 kW and 618.19 kVAR, the loss power in the transformer was 11.06 kW and 9.5 kVAR, and the loss power in the line was 1kW and - 7.8 kVAR.

A recommendation for improvement, it should be advised to do an addition of new substation with larger capacity. Furthermore, it could be changed the type of cable to be larger on the cross-sectional area of conductor. Finally, it should be advised to re-line or re-setting the distance between distribution transformers. To obtain the power loss at medium voltage distribution network more rigorous, it should be considered other loss factors, such as inductance, leakage current due to medium voltage on the line, and so forth.

ACKNOWLEDGMENTS

We would like to express the deepest appreciation to The State Electric Company APJ UB which has supported to provide the data.

REFERENCES

- [1] A.H. Al-Badi Senior Member IEEE, A. Elmoudi, I. Metwally Senior Member IEEE, A. Al-Wahaibi, H. Al-Ajmi and M. Al Bulushi, Losses Reduction In Distribution Transformers, Proceedings of the International Multi Conference of Engineers and Computer Scientists 2011, Vol. II, IMECS 2011, March 16-18, 2011, Hong Kong, ISBN: 978-988-19251-2-1, ISSN: 2078-0958(p), ISSN: 2078-0966(e).
- [2] Vafamehr, R., Design of Electrical Power Supply System in an Oil and Gas refinery, Master of Science Thesis in Electric Power Engineering, Department of Energy and Environment Division of Electric Power Engineering, Chalmers University of Technology, Göteborg, Sweden, 2011.
- [3] Yusoff, M., Busrah, A., Mohamad, M., Au, M.T., A Simplified Approach in Estimating Technical Losses in TNB Distribution Network Based on Load Profile and Feeder Characteristics, Recent Advances in Management, Marketing, Finances, ISSN: 1790-2769, ISBN: 978-960-474-168-7, pp.99-105.
- [4] Mau Teng Au1 and Chin Hooi Tan2, Energy flow models for the estimation of technical losses in distribution network, 4th International Conferenceon Energy and Environment 2013 (ICEE2013), IOP Publishing, pp.1-4.
- [5] Siti, MW, Nicolae, DV, Jimoh, A.A., Reconfiguration and Load Balancing in the LV and MV Distribution Networks for Optimal Performance, IEEE Transactions on Power Delivery, Volume: 22, Issue: 4, Oct. 2007)
- [6] Mahmud K., Haque, A.K.M.M., Power Scenario of Bangladesh and Schemes of Sustainable Optimal Reduction in the Power System Loss, Global Journal of Researches in Engineering, Electrical and Electronics Engineering, Vol. 12, Issue 9 Version 1.0 Year 2012, Global Journals Inc. (USA), Online ISSN: 2249-4596 & Print ISSN: 0975-5861.
- [7] Siddarameshwara, H.N., Kodad, S.F., Energy Auditing Result Analysis and Recommendations of Distribution

System, ISTE-ACEEE International Journal in Electrical Engineering, Vol. 1, No. 1, Feb 2014, pp.10-14.

- [8] Bamigbola, O. M., Ali, M. M., Awodele, K.O., Predictive Models of Current, Voltage, and Power Losses on Electric Transmission Lines, Journal of Applied Mathematics, Hindawi Publishing Corporation, Volume 2014, Article ID 146937, 5 pages.
- [9] Thejovathi, K., Parveen, S.F., Babu, G.V.S., Power Loss Reduction in Radial Distribution System by Optimal Capacitor Placement to Distribution Transformer, International Journal of Scientific Engineering and Technology Research Volume.03, IssueNo.43, December-2014, ISSN 2319-8885, pp. 8675-8682.
- [10] Adesina, L. M., Abdulkareem, A., Determination of Power System Losses in Nigerian Electricity Distribution Networks, International Journal of Engineering and Technology Volume 6 No.9, September, 2016, IJET Publications UK, pp.322-326.
- [11] Mufutau, W.O., Jokojeje, R.A., Idowu, O.A., Sodunke, M.A., Technical Power Losses Determination: Abeokuta, Ogun State, Nigeria Distribution Network as a Case Study, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 6 Ver. I (Nov-Dec. 2015), pp.1-10.
- [12] Izadi, M., Razavi, F., Hosseinian, S.H., A cost-effective analysis of the power-loss reduction methods in an actual distribution network, Elektrotehniski Vestnik, 81(4), 2014, pp.167-178.
- [13] A. Baitch, Distribution Loss Factor Calculation Methodology, Aurora Energy, July 2004.
- [14] Vegunta, S.C., Hawkins, D., Clifton, F., Steele, A., Reid, S.A., Distribution Network Losses and Reduction Opportunities from a UK DNO's Perspective, 23rd International Conference on Electricity Distribution, (CIRED 2015), Lyon, 15-18 June 2015, pp.1-5.
- [15] Kour, G., Sharma, R. K., Different Techniques of Loss Minimization in Distribution System, International Journal of Enhanced Research in Science Technology and Engineering, Vol. 2, Issue 2, Feb.2013, ISSN NO: 2319-7463, pp.1-5.
- [16] Refou, O., Alsafasfeh, Q., Alsoud, M., Evaluation of Electric Energy Losses in Southern Governorates of Jordan Distribution Electric System, International Journal of Energy Engineering, p-ISSN: 2163-1891 e-ISSN: 2163-1905, 2015; 5(2), pp.25-33.

- [17] Thakur, R., Chawla, P., High Voltage Distribution System (HVDS)-An Alternate for Improvement of Voltage Drop Profile, International Journal of Engineering Technology, Management and Applied Sciences, January 2015, Volume 3 Issue 1, ISSN 2349-4476, pp. 197-203.
- [18] Ajenikoko, G.A., Olaomi, A.A., A model for power losses reduction in low voltage distribution network of residential sectors, The International Journal Of Engineering And Science (IJES), Vol. 3, Issue 10, 2014, ISSN (e): 2319-1813, ISSN (p): 2319-1805, pp.67-74.
- [19] Singh, G., Power Loss Reduction in Practical Distribution System, International Journal of Electrical Engineering, ISSN 0974-2158 Volume 5, Number 2 (2012), International Research Publication House, pp. 185-195.
- [20] Shamsudin, N.H., Omar, N.F., Sulaima, M.F., Jaafar, H.I., Kadir, A..A., The Distribution Network Reconfiguration Improved Performance of Genetic Algorithm Considering Power Losses and Voltage Profile, International Journal of Engineering and Technology (IJET), Vol 6 No 2 Apr-May 2014, ISSN : 0975-4024, pp.1247-1258.
- [21] Kumar, M.K., Sairam, K.V., Santosh, R., Methods to Reduce Aggregate Technical and Commercial (At & C) Losses, International Journal of Engineering Trends and Technology (IJETT)-Vol.4, Issue 5, May 2013, ISSN: 2231-5381, pp.1501-1505.
- [22] Adejumobi, I.A., Adebisi, O. I., Power Loss Reduction on Primary Distribution Networks Using Tap-Changing Technique, IJRRAS 10 (2), Feb. 2012, pp. 272-279.
- [23] Jain, S., Singh, R., Enhancement of the Distribution System by Implementing LT- Less Distribution Technique, International Journal of Scientific and Research Publications, Vol. 3, Issue 10, Oct. 2013, ISSN 2250-3153, pp.1-7.
- [24] Mohsin Mahmood1, Om Shivam2, Pankaj Kumar3, Gopal Krishnan4, Real Time Study on Technical Losses in Distribution System, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 3, Special Issue 1, February 2014, ISSN (Print) : 2320 3765, ISSN (Online): 2278 8875, pp. 131-137.
- [25] Suhurani, N.F.A., Analysis of Technical Losses in Distribution Line, Degree of Master of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, July 2014.
- [26] Pande, S., Ghodekar, J.G., Computation of Technical

Power Loss of Feeders and Transformers in Distribution System using Load Factor and Load Loss Factor, International Journal of Multidisciplinary Sciences and Engineering, Vol. 3, No. 6, June 2012, ISSN:2045-7057, pp. 22-25.

- [27] Bamigbola, O. M., Ali, M. M., Awodele, K. O., Predictive Models of Current, Voltage, and Power Losses on Electric Transmission Lines, Journal of Applied Mathematics, Vol. 2014 (2014), Article ID 146937, 5 pages.
- [28] Siti, M.W., Nicolae, D.V., Jimoh, A.A., Ukil, A., Reconfiguration and Load Balancing in the LV and MV Distribution Networks for Optimal Performance, IEEE Transactions on Power Delivery, Vol. 22, Issue 4, Oct. 2007, pp.2534-2540.
- [29] Khan, M.A., Badshah, S., Haq, I.U., Hussain, F., Measures for reducing transmission and distribution losses of Pakistan, International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April 2013 ISSN 2229-5518, pp.616-619.
- [30] Vasile, P.G., Mircea, C., Radu, B., Octavian, G.C., Daniel, G., Răzvan, V., Reducing Losses in Electrical Distribution Systems Using Amorphous Transformers, Journal of Sustainable Energy, Vol. 1, No. 4, December, 2010, pp. 71-76.
- [31] Asawin Rajakrom, Undergrounding the Power Distribution Network in Luang Prabang World Heritage, MSG ARN International Journal 5 (2011), pp.37-44.
- [32] Abdou, A.A., Kamel, S., Eid, A., Voltage Stability Improvement of an Egyptian New City Electrical Network Using Static VAR Compensator, International Journal on Power Engineering and Energy (IJPEE) Vol.8, No.1, January 2017, ISSN 2314-7318(p), 2314-730X(p), pp.708-713.
- [33] Chembe, D. K., Reduction of Power Losses Using Phase Load Balancing Method in Power Networks, Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I, WCECS 2009, October 20-22, 2009, San Francisco, USA.
- [34] Lakshmanan, E., Kumaresan, M., Analysis of Technical Power Losses by Supervisory Control and Data Acquisition Load Flow Techniques, International Journal of Control Theory and Applications (IJCTA), 9(4), 2016, International Science Press, pp. 1855-1867.
- [35] Thakur, R., Chawla, P., Voltage Drop Calculations and Design of Urban Distribution Feeders, IJRET: International Journal of Research in Engineering and Technology, eISSN: 2319-1163, pISSN: 2321-7308, Vol.: 04 Special Issue: 12, NCIDCEME-2015 | Oct-

2015, pp.43-53.

- [36] Baghipour, R., S.M. Hosseini, A Hybrid Algorithm for Optimal Location and Sizing of Capacitors in the presence of Different Load Models in Distribution Network, Journal of Operation and Automation in Power Engineering, Vol. 2, No. 1, Winter & Spring 2014, pp.10-21.
- [37] Sanjay A. Deokar, Laxman M. Waghmare, Analysis of Distribution Transformer Performance under Nonlinear Balanced Load Conditions and Its Remedial Measures, International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459, Vol. 1, Issue 2, December 2011, pp.152-161.
- [38] Boroujeni, S. T., Mardaneh, M., Hashemi, Z., A Dynamic and Heuristic Phase Balancing Method for LV Feeders, Applied Computational Intelligence and So Computing, Volume 2016, Article ID 6928080, Hindawi Publishing Corporation, 8 pages.
- [39] Catelani, M., Ciani, L., Fossi, A., Giorgi, A., Battistone, A., D'Adamo, C., Fioriti, G., Modeling of outages occurrence in medium voltage power lines, AEIT International Annual Conference (AEIT), 2015, 14-16 Oct. 2015.
- [40] Santos, A.C., Romero, S.C., Garcia, A.E., Molina, C.P., Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters, energies, 2014, 7, ISSN 1996-1073, pp.6856-6885.
- [41] Ingmar Leiße, Integration of Wind Power in Medium Voltage Networks, Voltage Control and Losses, Division of Industrial Electrical Engineering and Automation Faculty of Engineering, Licenciate Thesis, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, 2011.
- [42] Minimizing Energy Losses: Optimal Accommodation and Smart Operation of Renewable Distributed Generation, IEEE Transactions on Power Systems, Vol. 26, Issue: 1, Feb. 2011, pp.198-205.
- [43] Tamizharasi, P., Anuradha, R., Ayshwarya, A.R, Analysis of Distribution Transformer Losses in Feeder Circuit, International Journal of Innovative Research in Advanced Engineering (IJIRAE), Vol. 1, Issue 1 (March 2014), ISSN: 2278-2311, pp.1-6.
- [44] Ahmad, A., Akbari, A., Iqbal, J., GIS-Based Identification of Overload Distribution Transformer and Calculation of Technical Electric Power Losses, International Journal of Civil Engineering and Geo-Environmental 6 (2015), ISSN: 21802742, pp. 14-21.
- [45] V. A. Kulkarni and P. K Katti, Estimation of Distribution Transformer Losses in Feeder Circuit,

International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, October 2011, PP. 659-662.

- [46] Shibata, E., Energy Saving by Reducing No Load Loss of Distribution Transformers, the 23rd Energy System, Economy and Environment Conference January 25-26, 2007.
- [47] Olivares, J.C., Liu, Y., Cañedo, J. M., -Pérez, R.E., Driesen, J., Moreno, P., Reducing Losses in Distribution Transformers, IEEE Transactions on Power Delivery, Vol. 18, No. 3, July 2003, pp.821-826.
- [48] Radu Godina 1, Eduardo M. G. Rodrigues 1, João C. O. Matias 1 and João P. S. Catalão 1,2,3, Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges, Energies 2015, 8, ISSN 1996-1073, 12147-12186.
- [49] Is_Ik, F., Glu, Y.U., Amorphous core transformers efficiency analysis in Turkish electrical distribution systems, Turkish Journal of Electrical Engineering & Computer Sciences, (2015) 23: pp.1523-1535.
- [50] Harden, K. D., Optimizing Energy Efficiency Standards for Low Voltage Distribution Transformers, Thesis, Master of Science in Engineering, Purdue University, Fort Wayne, Indiana May 2011.
- [51] Ghadai, J., Das, C., Failure of Transformers due to Harmonic Loads, International Journal of Electrical, Electronics and Mechanical Controls, ISSN (Online) : 2319-7501, Volume 3 Issue 3 September 2014, pp.1-12.
- [52] Ozerdem, O.C., Al-Barrawi, A., Biricik, S., Measurement and Comparison Analysis of Harmonic Losses in Three Phase Transformers, International Journal on "Technical and Physical Problems of Engineering" (IJTPE), March 2013, Issue 14, Volume 5, Number 1, pp. 114-118.
- [53] Jan, S. T., Afzal, R., Khan, A. Z., Transformer Failures, Causes and Impact, International Conference Data Mining, Civil and Mechanical Engineering (ICDMCME'2015) Feb. 1-2, 2015 Bali (Indonesia), pp.49-52.
- [54] Alias, L., Malathi, V., Methods for Reduction of Stray Loss in High Current LV Regions of Large Power Transformers Using FEM Analysis, International Journal of Research in Science and Technology, (IJRST) 2015, Vol. No. 5, Issue No. III, Jul-Sep e-ISSN: 2249-0604; p-ISSN:2454-180X, pp.40-52.
- [55] Farooq, A., Naveed, N., Simulink Modeling of Three Windings Linear Transformer as A Power Distribution Network, Sci.Int. (Lahore), 27(5), Sept.-Oct. 2015 ISSN 1013-5316; CODEN: SINTE 8, pp. 4101-4104.

- [56] Digalovski, M., Najdenkoski, K., Rafajlovski, G., Prediction of Core Losses of Three-Phase Distribution Transformer, Journal of Energy and Power Engineering 7 (2013), David Publishing, pp.2347-2353.
- [57] Dapke, S., Thosar, A.G., Shaha, S.S., Designing of Amorphous Core Distribution Transformer and Comparison with CRGO Core Distribution Transformer, International Journal Of Modern Engineering Research (IJMER), Vol. 5, Iss. 6, June 2015, IJMER | ISSN: 2249–6645, pp.1-5.
- [58] Man Mohan, An Overview on Amorphous Core Transformers, Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 3 (2): 217-220, © Scholarlink Research Institute Journals, 2012 (ISSN: 2141-7016), pp. 217-220.
- [59] Peter, G.P., A Review about Testing of Distribution Transformers, International Journal of Advancements in Technology (IJoAT), Vol 2, No 1 (January 2011), ISSN 0976-4860, pp. 165-177.
- [60] Irianto, C.G., Setiabudy, R., Hudaya, C., Design of Delta Primary - Transposed zigzag Secondary (DTz) Transformer to Minimize Harmonic Currents on the Three-phase Electric Power Distribution System, International Journal on Electrical Engineering and Informatics - Volume 2, Number 4, 2010, pp. 278-290.
- [61] Godina, R., Rodrigues, E.M.G., Matias, J.C.O., Catalão, J.P.S., Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges, Energies 2015, 8, ISSN 1996-1073, pp.12147-12186.
- [62] Shrivastava, N., Sameena, Mubeen, E., Evaluation of Energy Efficient Core Material of Distribution Transformer, International Journal of Electrical and Electronics Research ISSN 2348-6988 (online) Vol. 3, Issue 1, Month: January-March 2015, pp.113-117.
- [63] Hassan, R.U., Shami, U.T., Safdar, A., Evaluation of Losses and Life of Distribution Transformer under Non-linear Load using Wavelet Transform, Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences 53 (3): (2016), ISSN: 2518-4245 (print), 2518-4253 (online), Pakistan Academy of Sciences, pp.309–317.
- [64] Sah, R.M., Srivastava, J., Modelling And Simulation Of Distribution Transformer For Analysing The Transformer Losses Using Analytical And Simulation Method, International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622, Vol. 3, Issue 3, May-Jun 2013, pp.984-987.
- [65] Yendhe R.S, Jape V.S, Design of Energy efficient switchable distribution transformer and its compact

remote monitoring system, SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – volume 2 Issue 5 May 2015, ISSN: 2348 – 8379, pp. 22-28.

- [66] Sharma, R., Sharma, S., Control of Power Distribution Losses through Good Quality Distribution Transformers, International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 11, May 2013, ISSN: 2277-3754, pp. 192-195.
- [67] Kostinskiya, S.S., Troitskiy, A.I., Functional Dependence for Calculation of Additional Real-power Losses in a Double-wound Supply Transformer Caused by Unbalanced Active Inductive Load in a Star Connection with an Insulated Neutral, International Journal of Environmental and Science Education, 2016, Vol. 11, No. 15, pp.7975-7989.
- [68] Gupta, A., Soni, A., The Performance Analysis of Distribution Transformer under Domestic Harmonics Load, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, Vol. 4, Special Issue 4, November 2016, ISSN (Online) 2278-1021, ISSN (Print) 2319-5940, pp. 4-8.
- [69] Ghosh, S., Calculation of Hot Spot Temperature and Aging of A Transformer, International Journal of Technical Research and Applications, e-ISSN: 2320-8163, Vol. 4, Issue 1, Jan.-Feb., 2016, pp. 140-143.
- [70] Galvan, J.C.O., Perez, R.E., Maximov, S., Adame, S.M., Georgilakis, P.S., Cost reduction by interchanging the location of the windings in distribution transformers with HV copper winding and LV aluminum winding, International Transactions on Electrical Energy Systems, Int. Trans. Electr. Energ. Syst. (2014), pp.1-11.
- [71] Asrami, M.Y., Mirzaie, M., Akmal, A.S., Gholamian, S.A., Life Estimation of Distribution Transformers Under Non-Linear Loads Using Calculated Loss by 2D-FEM, Journal of Electrical Systems, 7-1 (2011), pp.12-24.
- [72] Pandav Sharoniben .J1, Parmar Jaydipsinh .K2, Analysis of Amorphous Metal Core Distribution Transformer, International Journal of Science and Research (IJSR) Volume 5 Issue 5, May 2016, ISSN (Online): 2319-7064, pp.88-91.
- [73] Kaur, G., Gupta, N., Design of Thermoelectric Cooler Transducer based Transformer Heat Exchanger System, International Journal of Current Engineering and Technology, Vol.5, No.5 (Oct 2015), E-ISSN 2277 – 4106, P-ISSN 2347 – 5161, pp. 3411-3414.
- [74] Manmohan, Distribution Transformer with Circular

Section of Amorphous Core, International Journal of Scientific Engineering and Technology, Volume No.1, Issue No.3, 01 July 2012, ISSN: 2277-1581, pp.67-71.

- [75] Srinivasan, M., Krishnan, A., Prediction of Transformer Insulation Life with an Effect of Environmental Variables, International Journal of Computer Applications (0975 – 8887) Volume 55– No.5, October 2012, pp. 43-48.
- [76] Tong, L., Research on Intelligent Online Monitoring and Evaluation of Power Transformer, The Open Electrical & Electronic Engineering Journal, 2015, 9, pp.483-489.
- [77] Majeed, I. B., Eduful, G., Normanyo, E., Determination of Optimum Number of Unit Transformers for High Voltage Distribution System, International Journal of Engineering Research and Technology (IJERT), IJERTV4IS050642, Vol. 4 Issue 05, May-2015, ISSN: 2278-0181, pp. 607-609.