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Abstract. Geometry railroad irregularities can disrupt safety of the train that passes 

through it and the comfort of train users. In geometric inspection of rail, it requires reliable 

accuracy from survey data. Terrestrial Laser Scanner (TLS) offers the advantage of 

obtaining accurate measurements of objects or 3D model. This study aims to examine 

irregularities of widening gauge and cant rail in curve no. 106, railroad between Station 

Cipatat – Station Tagogapu based on Minister of Transportation Regulation No. 60 of 2012. 

The 3D rail model from the point cloud TLS can be used to extract changes of the gauge 

and height differences with the help of cross- sections. Extraction of gauge and height 

differences is carried out per 1 meter and given numbering. The results of both gauge and 

height differences are adjusted to the type of track from the results of the design of the 

curve, then compared with the value of the standard widening gauge and cant based on the 

Minister of Transportation Regulation No. 60 of 2012. The result extraction of the rail 

gauge in curve no. 106, shows the highest irregularities of widening gauge on the gauge 

number 24 with deviation value +0,017 m. The results of obtaining height differences rail 

extraction at curve no. 106, shows the highest irregularities of rail cant on the height 

differences number 15 and 16 with deviation value +0,022 m. 

 

1. Introduction 
Rail geometry is the shape and size of the rail, both in the elongated and transverse directions 

which include the gauge of the rail, slope, horizontal curve, vertical curve, cant, and track 

widening [1]. Rail geometry must be planned with reference to Minister of Transportation 

Regulation of the Republic of Indonesia number 60 of 2012 regarding Technical Requirements 

for Railroad. This planning must take into account safety, comfort, economic, and harmony 

with the environment [2]. 

Railroad maintenance includes checking the condition of the railroad and preparing 

maintenance programs. Checking the condition of the railroad is done as an initial measure to 

obtain data regarding the condition of a rail. Good geometry conditions of railroads are 

indispensable for the safety and comfort of train travel [3]. The existence of rail geometry 

irregularities can disrupt the security and safety of trains that pass through it and interfere with 

the convenience of train users. Therefore, a study of rail geometry irregularities is needed to 

ensure the safety of train users and property. 

Terrestrial Laser Scanner (TLS) technology offers the advantage of obtaining accurate 3- 

dimensional (3D) object measurements around the railroad tracks in a short operational time 

[4]. In addition, the results of rail extraction from TLS point cloud data can be used to 

determine the geometry features of rail alignment (straight lines, vertical or horizontal curves, 
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transitional curves, cant, rail gauge, rail widening) and elongated profiles (slope) [5]. 

The focus of this research is to study the irregularities of geometric features (horizontal 

alignment), namely cant and widening of the rail in one of the curve in railroad between 

Cipatat - Tagogapu using point cloud data based on TLS survey results. This railroad geometry 

irregularities study refers to the Regulation of the Minister of Transportation No. 60 of 2012 

concerning Technical Requirements for the Railroad. 
 

2. Methodology Research 
 

2.1. Location 
The location used in this study is in the curve No. 106 railroad between Cipatat - Tagogapu, 

West Java Province, Indonesia. The track length of the location under study ± 120 meters. 

Based on its geographical position, the research location is between 6°48'37 "-6°48'38" South 

Latitude and 107°27'46"-107°27'50" East Longitude. Detailed location of the study is shown in 

figure 1. 

Figure 1. Location study. 
 

2.2. Methodology 
The methodology used in this study includes planning and field data collection, TLS data 

processing, model identification, determination of rail widening and cant, results and discussion. 

The stage diagram of the work in this study can be seen in figure 3. 
 

2.3. Planning and Field Data Collection 
The initial stage is the planning of control points and traverse points around the study site. The 

planned control points are 2 points namely P001 and P002, while the planned traverse points 

are 10 points, among others, T1, T2, T3, T4, T5, T6, T7, T8, T9, and T10 (figure 2). 
 

Figure 2. Control points and traverse points. 
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The next stage is field data retrieval. GPS observations are made to obtain the coordinates of the 

control points and ETS is done to obtain the coordinates of the traverse points. GPS and ETS data 

are processed and then used as a reference for TLS scanning. TLS scanning was performed using 

Topcon GLS-2000 with a scan resolution of 12.5 mm at distance 10 m. 

Figure 3. Research Methodology 

 
2.4. TLS Data Processing 

TLS processing is divided into 3 stages, namely registration, georeferencing, and filtering. The 

registration method used is occupation / backsight and additional fine registration in order to 

obtain a better RMS registration. The use of the occupation / backsight method produces real 

coordinates so that the point cloud data has been georeferenced automatically. The results of 

occupation / backsight registration and fine registration are shown in Table 3. 
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Table 1. Result of Occupation/backsight dan fine registration. 

Reference Registration RMS (Meter) 

P001 T1 0.009 

T1 T2 0.009 

T2 T4 0.013 

T4 T5 0.008 

T5 T6 0.007 

T6 T7 0.008 

T7 T8 0.008 

T8 T9 0.008 

T9 T10 0.011 

RMS Mean 0.009 

 

The last step is filtering. Filtering is done to remove points that are not needed outside the 

rail track. Filtering is done so that the point cloud is not too large so it does not burden the next 

process. This process is not carried out to remove noise in the railroad tracks, such as grass or 

rocks. Removing noise that is close to the rail can cause the rail points to disappear. 
 

2.5. Point Cloud Rail Model Identification 
The results of the rail model formed by point cloud show error points with varied errors. The 

distribution point cloud to form rail model should form a planar object on the linear part. 

Differences in the rail model registration results and the rail model that should be (planar), 

cause the extraction results of both the gauge and elevation of the rail to contain errors. In order 

not to increase the error due to the varying position of the rail gauge vector and rail elevation, 

the R33 rail profile model needs to be adjusted to the point cloud rail model. This rail profile 

model is overlaid with the rail point cloud model, so the vectorization points are determined 

based on the rail profile model. This rail profile model was made in the Bentley Inroads 

software with reference to drawings based on rail profile size. The overlay location of the point 

cloud model with the rail profile model needs to be determined so that the model is overlaid 

accurately. The locations chosen to overlay the point cloud model with the rail profile model 

are the logical points forming a rail model. The selection of points at this location is 

interpretive during the railroad vectorization and rail elevation processes. Overlaying of the 

model of the rail profile is also carried out at locations where the top surface point of the rail 

head is not detected. The overlay of the rail profile model and the point cloud rail model are 

shown in figure 4. 

 

Location of rail gauge 

vectorization based on 

rail profile model 

Vectorization location of rail 

elevations based on rail 

profile models 

 

 

 

 

 

 

 

Figure 4. Overlaid rail profile model on point cloud rail 
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In identifying rail models for vectorization, it is also necessary to consider the thickness of 

the cross section. The determination of cross section affects the accuracy of the rail point cloud 

model. The thickness of the cross section depends on the curvature of the track and the density 

of the rail point cloud. At a position where low density, large cross section thickness will 

represent a better model, in contrast to high density. In a position where the curvature is large, a 

small cross section thickness will represent a better model, in contrast to high density [6]. The 

thickness of the cross section used in this study is in the range of 5 mm to 3 cm. Cross sections 

in each rail model are tried over and over in a predetermined range to get a good interpretation. 

The relationship of cross section thickness on the point cloud rail is shown in figure 5. 
 

Figure 5. Relationship of cross section thickness on point cloud rail. 
 

2.6. Determination of Rail Widening and Rail Cant 
The initial stage in the process of determining the horizontal alignment feature is extracting the 

rail gauge and rail elevation. The process is by vectorizing the gauge and elevation of the rail at 

the point cloud of the inner rail and outer rail. Vectorization rail gauges and rail elevations are 

done under different conditions. The gauge of the rail is done 0-14 mm below the top surface of 

the rail according to the provisions of the technical requirements of the railroad track. Whereas 

for rail elevation, vectorization is done on the top surface of the rail. Vectorization is done with 

the help of using the cross section display of the rails, the points that are crossed by the 

vectorization line are determined manually and adjusted to the point cloud rail based on the 

stipulated conditions. Furthermore, the gauge and elevation rail results are extracted using the 

extract rail gauge feature on the VR-Mesh Survey software. The results of gauge extraction and 

elevation are used for advanced vectorization to correct previous vectorization points. The 

results of extraction rail gauge and elevation then re-vectorized on the Bentley Descartes V8i 

software. The rail profile model is overlaid on the rail point cloud model. This rail profile model 

is used as a reference to correct the elevation point and gauge point of the rail. Cant rail are 

calculated based on the differences between two rail elevation and gauge rail calculated based on 

straight line from two points between two rail. Next, the middle point coordinates of the rail 

gauge line are used to vectorize the centerline rail. Centerline rails are used for creating track 

geometry animations. Next step, the curve design is made using the parameters of the 

transitional curve length, curve radius, and the two initial and final existing centerline points. 

This curve is made using the spiral-curve-spiral feature in the Bentley Power Inroads software. 

The vectorization lines of the gauge and elevation of the rails are compared to the curved design 

so that a type of track definition is obtained for each number of gauge and different rail heights. 

The type of track definition is line, transitional curve and full circle curve. Rail gauge and rail 

height differences are numbered sequentially from number 1, 2, 3, and so on from the direction 

of Cipatat towards Tagogapu. 
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3. Results and Disscussion 
The results obtained from this study are graphs and tables of widening and cant of the extracted 

rails. The widening and elevation graphs of the rails are shown in Figs. 6 and 7. 
 

 
Figure 6. Rail widening chart. 

 

Figure 7. Cant rail chart. 

3.1. 3D Rail Model form Point Cloud 
Point cloud on the top surface of the rail head results in poor distribution of points. Many of the 

points on the surface of the head rail are not detected properly by TLS, so that some point 

cloud rail models are not formed perfectly. According to [7] the surface of a shiny object is 

usually difficult to record. A shiny object depends on the material or layers on the object itself. 

This may occur in steel material or layers lining the top surface of the rail head which caused by 

direct reflection of sunlight so that the top surface of the rails shiny. However, this can also be 

influenced by the scanner's inability to obtain rail data, especially the top surface of the rail 

head, so more in-depth research is needed for this case. In addition, the undetected surface of 

the rail head is also affected by the increasing distance of the object to the scanner. The 

distribution of the top surface points of the rail head that is close to the scanning station has 
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more points than points far from the station. Vectorization for rail elevation is done by 

overlaying the rail profile model on the rail point cloud model. Vectorization lines at 

undetected points are determined based on the top surface of the rail head profile model. 

At some stations, the scanning position is focused on obtaining point cloud data on the top 

surface of the rail head and a small part of the side rail head, especially at locations far from the 

two scanning stations. However, based on previous studies of the top rail head surface model 

where the distribution of the top surface points of the rail head is poor, causing the distribution 

of point clouds in the rail head to disappear entirely at certain locations. These locations are 

between stations T5-T6 with a length of ± 6 meters and between stations T7-T8 with a length of 

± 4 meters. In addition, in the scanning area between P001-T1 stations, the rail conditions are 

below the ground or vegetation so that the model is not visible with a length of approximately ± 

2 meters. The measurement values on the gauge and height differences of this location are 

ignored and marked in red in the widening and elevating rail table attachments. 

The 3D rail model of point cloud registration results shows an error points. Bias in rail 

models especially rail heads can cause errors in the gauge and height differences measurement. 

Error points are caused by many error factors including GPS observations, polygon 

measurements, TLS errors, noise, cross section thickness and others. The biggest factor of error 

is the coordinates on the Z axis. This is indicated in the shape of the top surface of the rail head 

that has more error points than other rail sections. This error is caused by the accumulation of 

GPS, ETS, and TLS errors. Although fine registration has been done to obtain better 

registration results, the maximum RMS results obtained are only in the range of 7 mm to 1.3 

cm. In this biased rail model, the solution for determining the point of vectorization is by the 

overlay of the point cloud rail model with the rail profile model. 
 

3.2. Rail Widening Irregularities 
The study of railroad irregularities is carried out based on track definition and widening of the 

PM standard rail. No. 60 of 2012 in accordance with figure 6. The definition of the railroad 

track is divided into three types, namely straight track, transition curves and full circle curves. 

Curved no. 106 on the Cipatat - Tagogapu railroad has a radius of 150 m. Irregularities are 

examined based on visualization of changes in both the increase and decrease in the widening 

of the rail from the results of the graph and the value of the deviation. The gauge of the railroad 

at full circle curve for 100 <R <350 radius of curve is 20 mm, so the gauge of the track at the 

full circle curved is 1.067 m + 20 mm = 1.087 m. Widening in a straight line is 0 or no widening. 

In the transitional curve widening value is varies, increase gradually before the full circle curve 

and decreases after the full circle curve in accordance with the direction of depiction on the 

graph. The deviation tolerance in the railroad between Cipatat-Tagogapu is +4 mm and-2 mm. 

The results of the study of rail widening irregularities in curve no. 106 shows deviations 

exceeding the tolerance limits of +4 mm and -2 mm in rail gauge numbers 8, 9, 10, 12, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 , 30, 35, 37, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 65, 
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 , 77, 78, 80, 81, 82, 83, 89, 90, 91, 92, 108, 109, 110, 

113, 114, 116, 117, 119, and 120. The biggest deviation occurs in the rail width number 24 

with a value of deviations + 0.017 m. 

 
3.3. Raill Cant Irregularities 

Cant rail irregularities study is based on the track definition and standard rail cant Minister of 

Transportation Regulation No. 60 of 2012 according to the graph in figure 7. According to 

regulation of the Minister of Transportation of the Republic of Indonesia number 32 year 2011 

regarding Railways Maintenance Standards and Procedures, if the existing height differences 

value > 7 mm compared with theoretical height differences value, then the railroad must be 

repaired. This 7 mm limit is used as a reference for rail height deviation tolerance. Value of the 

cant in full circle curve no. 106 is 0.100 m or 100 mm and in straight track the height 
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differences is 0 which means there is no cant. The rail cant in the transition curvature varies 

and is elevated gradually in the transitional curve before the full circle curve then decrease 

gradually in the transitional curve after the full circle curve. 

The results of the study of rail cant irregularities in curve no. 106 shows deviations 

exceeding the tolerance limit of 7 mm in height difference numbers 3, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 67, 68, 69, 70, 

71, 80, 81, 82, 105, 106, 107, 108, 109, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, and 

119. The biggest deviations occur in height differences number 15 and 16 with value 

deviations +0.022 m. 
 

4. Conclusions 
The quality of the model both 2D and 3D affects the measurement of the height difference and 

gauge of the rail. Error factors in the model causes the possibility of the result of the rail gauge 

and height difference has potential error or not absolute. The solution to use a rail profile 

overlay model is quite helpful in interpreting the rail model according to its existing position so 

that points for vectorization can be determined. 

Study of rail widening irregularities in curve no. 106 shows that 58% of the existing rail 

gauge have exceeded tolerance limits of +4 mm and -2 mm. The biggest deviation occurs in 

rail gauge number 24 with a deviation value of +0.017 m. 

Study of rail cant irregularities in curve no. 106 shows 52% of the existing height difference 

numbers have deviations exceeding the tolerance limit of 7 mm. The biggest deviation 

occurred at a height difference number 15 and 16 with a deviation value of +0.022 m. 

Based on the results of this study, some suggestions are submitted, especially to other 

researchers who will examine the same problems, methods, or instruments to minimize the 

shortcomings obtained from this research, namely, using a higher scanning resolution, using 

better registration method (some studies show registration with the target to target method with 

additional fine registration using the least square adjustment has a better level of accuracy than 

other registration methods), first test TLS scanning with different settings or compare which 

TLS is better for rail objects, using TLS phase shift (some studies show the acquisition of point 

cloud data with high accuracy for this type of TLS), do scanning at night (some studies obtain 

point cloud data with precision higher when done at night). 
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