Quality prediction model, as the key to realize the real-time online quality monitoring process, has been developed using various data mining techniques. However, most of quality prediction models are developed in single-stage manufacturing system, where the relationship between manufacturing operation and quality variables is straightforward. Previous studies show that single-stage quality system cannot solve quality problem in multi-stage manufacturing system due to the complex variable relationships. This study is intended to propose a data mining method to develop quality prediction model which is able to deal with the complex variable relationships in multi-stage manufacturing system. This method, named Cascade Quality Prediction Method (CQPM), is developed by considering the complex variables relationships in multi-stage manufacturing system. CQPM employs the combination of multiple Principal Component Analysis and Iterative Dichotomiser 3 algorithm. A case study in semiconductor manufacturing shows that the prediction model that has been developed using CQPM is performed better in predicting both positive and negative classes compared to others.