Wieb of Conferences


Proceedings

Books

Conferences

MATEC Web of Conferences

All issues Series Forthcoming **About**

Q Search **≡** Menu

About the journal > Editorial board

About the journal

Aims and scope

Editorial board

Indexed in

Publishing Policies & Ethics

Published by

Editorial board

Rachid Bennacer

École Normale Supérieure, Cachan, France

website

Chérifa Boukacem-Zeghmouri

Université Claude Bernard Lyon 1, Villeurbanne, France

website

Vladimir Buzek

Slovak Academy of Sciences, Bratislava, Slovakia

website

Heidi Gautschi

Haute Ecole Pédagogique de Lausanne, Switzerland

Éric Lichtfouse

National Research Institute for Agriculture, Food and Environment (INRAE), Aix-en-Provence, France website

Maria S. Madjarska

Max Planck Institute for Solar System Research, Germany

Nigel Mason

University of Kent, Canterbury, United Kingdom

Jun Sun

Tianjin University of Science and Technology, P.R. China website

Ming-Jun Zhang

DGUT-CNAM Institute, Dongguan University of Technology, Guangdong Province, P.R. China website

Zhien Zhang

The Ohio State University, Columbus, USA

MATEC Web of Conferences

eISSN: 2261-236X

Mentions légales Contacts

Privacy policy

Books

Conferences

MATEC Web of Conferences

All issues Series Forthcoming **About**

Q Search

≡ Menu

All issues > Volume 147 (2018)

Table of Contents

Free Access to the whole issue

MATEC Web of Conferences

Volume 147 (2018)

The Third International Conference on Sustainable Infrastructure and Built **Environment (SIBE 2017)**

Bandung, Indonesia, September 26-27, 2017 D. Roosmini, K. Pribadi, B. Sugeng and I.K. Hadihardaja (Eds.)

Export the citation of the selected articles Export Select all

Open Access

Statement of Peer review Published online: 22 January 2018

PDF (163 KB)

Open Access

About the conference

Published online: 22 January 2018

PDF (9.07 KB)

PDF (283 KB) References

			pen	Acc	es
--	--	--	-----	-----	----

Erosion index formulation with respect to reservoir life in the upper Citarum watershed 03002

Bakhtiar

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814703002

PDF (641 KB) References

Open Access

Development Land Erosion Model Using Model Builder GIS (Case Study: Citepus Watershed) 03003

Dina PA Hidayat and Sih Andajani Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814703003

PDF (594 KB) References

Open Access

Study of the Relation between Sediment Characteristics and Multiphase Flow to the Presence of Sediment Oxygen Demand (SOD) in Open Channels 03004

Dhimas Dwinandha and Haryo Satriyo Tomo

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814703004

PDF (503.1 KB) References

Open Access

The Performance of Equalization Model of Water Allocation Inter Irrigation Areas in River System 03005

Anang M. Farriansyah, Pitojo Tri Juwono, Ery Suhartanto, Very Dermawan and Rahimatus S. Z. Alyaminy Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814703005

PDF (1.13 MB) References

Open Access

Diversion Canal to Decrease Flooding (Case Study: Kebon Jati-Kalibata Segment, Ciliwung River Basin) 03006

Dian Indrawati, Iwan K. Hadihardaja, M. Bagus Adityawan, Syambali F. Pahrizal and Fajar Taufik Published online: 22 January 2018 Open Access

Development of audit technology approach for performance improvement of faecal sludge treatment plant (IPLT) (Case study: IPLT Bawang in Tangerang City and IPLT Pecuk in Indramayu District) 04001

Rydha Riyana Agustien, Prayatni Soewondo and Arief Sudradjat

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814704001

PDF (348 KB) References

Open Access

Analysis of Drinking Water Supply System Improvement Using Fuzzy AHP(Case Study: Subang Local Water Company) 04002

Satrio Budi Prakoso and Suprihanto Notodarmojo

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814704002

PDF (2.10 MB) References

Open Access

Screening The Effect of Cu, Mn, and Mg on Ethanol Formation in Degradation Process of Palm Oil Mill Effluent (POME) under Anaerobic Condition Using Two-Level Factorial Design Method 04003

Tia Widya Puteri and Mindriany Syafila

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814704003

PDF (505 KB) References

Open Access

Kinetics of nutrient removal in an on-site domestic wastewater treatment facility 04004

Va Vandith, Ahmad Soleh Setiyawan, Prayatni Soewondo, Pom Bophann and Hardjono

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814704004

PDF (372 KB) References

Open Access

Control of pH of retained water in the coastal waste disposal site 04005

Ramrav Hem, Tomohiro Yamasaki and Hiroko Sumida

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814704005

- Environmental Protection and Management

_	oe
	Insight look the subsidence impact to infrastructures in Jakarta and Semarang area; Key for adaptation and mitigation 08001 Heri Andreas, Hasanuddin Zainal Abidin, Dhota Pradipta, Dina Anggreni Sarsito and Irwan Gumilar Published online: 22 January 2018 DOI: https://doi.org/10.1051/matecconf/201814708001 PDF (1.76 MB) References
	Open Access Utilization of alternative fuels and materials in cement kiln towards emissions of benzene, toluene, ethyl-benzene and xylenes (BTEX) 08002 Ulfi Muliane and Puji Lestari Published online: 22 January 2018 DOI: https://doi.org/10.1051/matecconf/201814708002 PDF (577 KB) References
	Stream Sediment Geochemical Survey of Selected Element In Catchment Area Of Saguling Lake 08003 Eka Wardhani, Suprihanto Notodarmojo and Dwina Roosmini Published online: 22 January 2018 DOI: https://doi.org/10.1051/matecconf/201814708003 PDF (441 KB) References
	Open Access Assessment of Infectious Waste Management Practices at Hospital with Excellent Accreditation Level in Bandung, Cimahi and East Jakarta, Indonesia 08004 Novi Fitria, Enri Damanhuri and Indah R.S Salami Published online: 22 January 2018 DOI: https://doi.org/10.1051/matecconf/201814708004 PDF (280 KB) References
	Open Access Study of whole effluent acute toxicity test (<i>Daphnia magna</i>) as an evaluation of Ministry of Environment and Forestry Decree No. 3 In 2014 concerning industrial performance rank in environmental management 08005 Neng Rohmah, Dwina Roosmini and Mochamad Adi Septiono

https://www.matec-conferences.org/articles/matecconf/abs/2018/06/contents/contents.html

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814708005

PDF (988 KB) References

Open Access

The progressive realization of human rights to water: the legal basis, policy implications, and monitoring challenge 08006

Anindrya Nastiti and Teddy Prasetiawan

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814708006

PDF (287 KB) References

Open Access

Acidic Wet Deposition in Bandung City Indonesia 08007

Nia Yuniarti Hasan, Driejana, Aminudin Sulaeman and Herto Dwi Ariesyady

Published online: 22 January 2018

DOI: https://doi.org/10.1051/matecconf/201814708007

PDF (654 KB) References

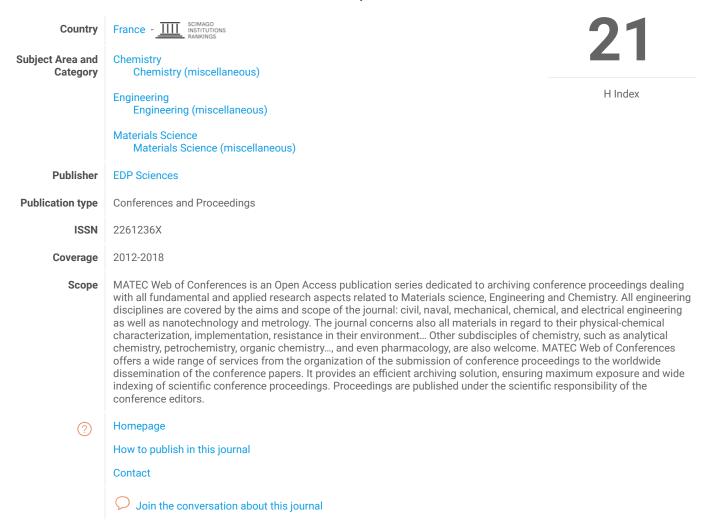
MATEC Web of Conferences

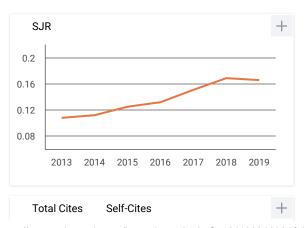
eISSN: 2261-236X

Mentions légales

Contacts

Privacy policy


Scimago Journal & Country Rank


Enter Journal Title, ISSN or Publisher Name

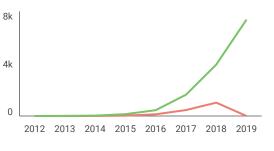
Home Journal Rankings Country Rankings Viz Tools Help About Us

MATEC Web of Conferences

discontinued in Scopus as of 2018

Citations per document

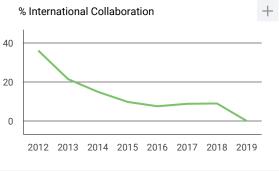
1/10/2021

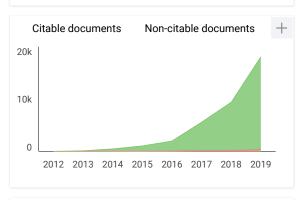

0.5

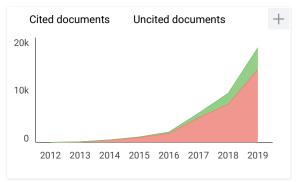
0.25

0

8k 4k 2012 2013 2014 2015 2016 2017 2018 2019


External Cites per Doc


Cites per Doc



MATEC Web of Conferences

2012 2013 2014 2015 2016 2017 2018 2019

Indexed Research Journal

The journal has an impact factor and is covered in main abstracting and indexing services

thieme.com

OPEN

Metrics based on Scopus® data as of April 2020

Stream Sediment Geochemical Survey of Selected Element In Catchment Area Of Saguling Lake

Eka Wardhani^{1,*}, Suprihanto Notodarmojo², and Dwina Roosmini²

Abstract. Saguling Lake is one of the largest lakes in West Java Province that accommodates domestic and non-domestic wastes via the Citarum River as its main water source. This study aims to determine the geochemical background concentration (Cbg) in water catchment area of Saguling Lake. The knowledge of the Cbg of heavy metals is essential for defining pollution, identifying the source of contamination, and for establishing reliable environmental quality criteria for sediments. The value of Cbg will be used for assessment of the sediment quality in Saguling Lake. Assessment of sediment quality is very important to determine the actual condition of water in the lake and as the basis for management of waters environment in the future. The search was taken at 22 sampling points in the unpolluted water catchment area. Samples were collected and analyzed for Cd, Cr, Cu, and Pb. Each sample was digested in agua regia and analyzed by ICP-EOS. Results showed Cbg which are: Cd 0.34 ± 0.10 mg/kg, Cr 110.57 ± 28.61 mg/kg, Cu 49.93 ± 9.28 mg/kg, and Pb 18.62 ± 9.83 mg/kg. Based on the assessment result, it is concluded that the sediment quality in Saguling Lake is categorized as polluted by Cd, Cr, Cu, and Pb metals.

1 Introduction

The Sediments are the layers of relatively finely divided matter covering the bottoms of river, streams, lake, and oceans. Sediment typically consists of mixture of fine, medium, and coarse grained minerals, including clay, silt, and sand mixed with organic matter. They may vary in composition from pure mineral matter to predominantly organic matter. Sediments are lake of a variety of biological, chemical, and pollutant detritus in bodies of water and are repositories of pollutants such as heavy metals and organic compounds. Of particular concern is the transfer of chemical species from sediment into aquatic food chains via organisms that spend significant parts of their life cycles in contact with or living in sediment [10].

Sediment constitutes an integral and dynamic part of a stream basin, originating from weathering of minerals and soils up stream. Natural concentrations of heavy metal as a result of the weathering process of mineral deposits can be quite high in stream sediments close to the deposit, but decrease with increasing distance downstream, due to dissipation energy and dilution of sediments from other not polluting source [12].

The term "geochemical background" was first introduced by geochemistry explorers in the midtwentieth century to distinguish between the unmineralized element abundance and the mineralized one

from rock formations. In the last few decades "Geochemical background concentration (Cbg)" has become one of the most important terms in environmental science. Cbg is used to distinguish pollution occurring in environment whether the source of pollutant comes from human activities or from natural phenomena (geogenic/biogenic) [13]. The adaptation process of Cbg in environmental science generates wider meanings and applications. Currently Cbg is applied not only to rocks, minerals, and sediments but also to water and air [13,7].

Cbg is the concentration of metal derived from the weathering of original rocks of the earth's crust without any addition of anthropogenic activity [9]. Cbg is very specific depending on the structure of rocks forming it. There are many Cbg terms in geology such as ambient background, area background, natural background, naturally occurring background, Pedogeochemical background, and pre-industrial background [13]. Evaluation of Cbg is essential since it generates impact for assessment of environmental risk and the determination of regulations related to the environmental baseline of elemental pollution [13].

The purpose of this research is to identify the Cbg of 4 types of heavy metals i.e. Cd, Cr, Cu, and Pb from water catchment area of Saguling Lake. The value of Cbg will be used as a basis to determine the sediment quality in the lake. Monitoring on sediment quality

¹Study Program of Environmental Engineering, Faculty of Civil and Environmental Engineering, Post-Graduate Program, Institut Teknologi Bandung 40132, Indonesia,

²Departement of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung 40132, Indonesia

Corresponding author: ekw wardhani@yahoo.com

should become an integral part of water quality management and water pollution control program considering that sediment is the site for accumulation of pollutants including heavy metals.

2 Material and methods

2.1 Sample collection and chemical analysis

Stream sediment samples were collected using hand trowel from 22 different points in Catchment area of Saguling lake, in November 2015 sampling location are presented in Table 1. The sampling locations were recorded (latitudinal and longitudinal position) using hand-held Global Positioning System (GPS). The location of sampling were selected based on criteria that these locations are in areas that have not been contaminated by human activity. Sampling sites are scattered in the water catchment area of Saguling Lake and concentrated in Southern part which is relatively less contaminated than the Northern or Eastern part.

Table 1. Sampling location catchment area of Saguling lake

No	South	East	Location
1	6°47'34.66"	107°34'39.07"	Kertawangi
2	6°48'52.80"	107°42'30.66"	Pasir Buleud
3	6°52'24.84"	107°42'52.00"	Melatiwangi
4	6°56'32.30"	107°32'09.70"	Nanjung
5	6°58'30.00"	107°36'30.00"	Cisirung
6	6°59'28.50"	107°37'35.30"	Dayeuhkolot
7	7°01'58.20"	107°40'36.28"	Ciheulang
8	7°04'29.00"	107°44'53.00"	Wangisagara
9	7°08'43.05"	107°41'57.00"	Babakan
10	7°09'13.14"	107°42'34.17"	Pacet
11	7°10'21.76"	107°39'41.60"	Halimun Mt
12	7°11'36.62"	107°38'46.49"	Margamukti
13	7°12'06.02"	107°39'55.00"	Cibeureum
14	7°12'30.14"	107°39'20.16"	Cisanti Lake 1
15	7°12'35.87"	107°39'24.10"	Cisanti Lake 2
16	7°12'40.12"	107°39'31.71"	Cisanti Lake 3
17	7°13'03.60"	107°39'22.50"	Cisanti Lake 4
18	7°10'09.12"	107°42'36.69"	Cihawuk
19	7°13'22.78"	107°41'26.65"	Guha Mt 1
20	7°13'22.78"	107°41'26.65"	Guha Mt 2
21	7°12'40.44"	107°39'09.01"	Wayang Mt 1
22	7°12'40.44"	107°39'09.01"	Wayang Mt 2

Samples were then placed into polyethylene bags, and refrigerated at 4° C. They were analyzed in the laboratory. Each sediment sample was dried at 50° C, the samples were then grounded using pestle and mortar until all particles passed a 200-mesh nylon sieve. This fraction is mainly contained silt and clay; Thus, this fraction may adsorb a higher heavy metal concentration. The extraction of heavy metals were made using conventional digestion procedure of sediment samples, which consists of digesting aliquots of 1 g of dry

sediment was weighted into Teflon beakers, to which a mixture of concentrated HNO₃: HCl (3:1) was added and digested in a water bath during 3 h at 120°C. The concentration of Cd, Cr, Cu, and Pb, were determined for each sample using an Inductively Coupled Plasma Optical Emission Spectrometry or *ICP-OES*.

Currently there are various geochemical indices to be used in assessment of the quality of sediments in waters related to heavy metal pollution. The indices include Contamination Factor (CF). Both indexes assess the quality of sediment at each sampling point. Data of Cbg shall be used to determine the quality of sediments at 12 points in Saguling lake. Assessment of sediment quality in Saguling lake uses the method of CF. The 12 points of sediment sampling locations around Saguling lake are presented in Table 2 and Figure 1.

Table 2. Sampling locations

No	South	East	Location
1A	06°56'29,8"	107°32'10.7"	Citarum River Nanjung section
1B	06°54'58,9"	107°28'32.3"	Sungai Citarum <i>Trash Boom</i> Batujajar
2	06°53'13,5"	107°28'32.3"	Cihaur Kampung Cipeundeuy
3	06°53'13,4"	107°27'09.0"	Cimerang
4	06°53'13,0"	107°25'54.4"	Muara Cihaur Kampung Maroko
5	06°56'07,6"	107°27'25.5"	Muara Cipantik
6	06°57'14,6"	107°26'03.8"	Muara Ciminyak-lokasi perikanan jaring terapung
7	06°56'14,9"	107°24'50.8"	Muara Cijere
8	06°56'00,4"	107°22'22.4"	Muara Cijambu
9	06°54'54,4"	107°22'26.3"	Dekat Intake Structure
10A	06 ⁰ 51'49,8"	107°20'57.0"	Tailrace
10B	06 ⁰ 51'10,8"	107°20'58.0"	Bantar Caringin

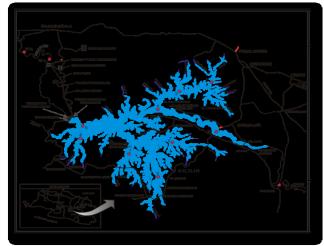


Fig. 1. Study area and sampling stations in Saguling
Lake West Java

The level of sediment contamination by heavy metals is often expressed in CF in the following equation:

$$CF = \frac{Cme}{Cbg} \tag{1}$$

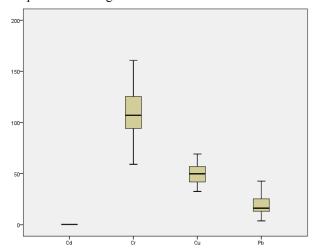
Where C_{Me} is the concentration of metals in the sediment samples (mg/kg) [17]. This method compares the concentration of one type of heavy metal to the background heavy metal which is the concentration of the original heavy metals derived from the earth's crust. The results of the calculation by this CF method are compared with some grade of pollution levels as presented in Table 3.

Table 3. Catagory class of sediment quality with CF [17]

CF value	Level of Pollution
CF <1	Low
$1 \le CF \ge 3$	Moderated
$3 \le CF \ge 6$	Considerable
CF> 6	Very high

3 Results and disscussion

3.1 General and local geological setting


The catchment area of Saguling lake is a basin area of Bandung. The greater Bandung area is a large intramontane basin surrounded by volcanic highlands. The central part of basin has an altitude of about 665 m and surrounded by up to 2.400 m. Tertiary and quaternary volcanic terrain. The basin measures about 45 x 45 km and has a total area of 1.830 km². The basin is surrounded by volcanic mountains, which are the lowest at the north-west side. On the side, the Saguling lakes is located. The main river, the Citarum springs at Situ Cisanti 78 km upstream of the lake. In the basin about 200 major tributaries with corresponding sub basins can be distinguished. Citarum river with its tributaries forms the main drainage systems of the basin catchment. Deposits in the basin comprise of course volcanic lastics. fluvial sediments and notably a thick series of lacustrine deposits. The climate of the basin of the basin is relatively cool compare to the rest of Indonesia, with temperature mostly between 20 and 30°C. The annual rainfall varies from 1,200 to 3,000 mm, with an average of 2,215 mm. The monthly rainfall during the wet season (November-April) is about 250 mm, varying from 100-500 mm. During the dry season (July-September) monthly rainfall usually is less than 50 mm [16].

The greater Bandung basin area encompasses five administrative units which are Bandung municipality, Cimahi municipality, Bandung regency, West Bandung regency plus part of Sumedang regency (3 village). Large population growth and urbanization is taking place in the greater Bandung Basin. In 1995, the population was about 2.5 million and in 2010 the population grew to 7.8 million. It is commonly believed that this urbanization will continue, but it is very uncertain to what extent. In addition with expansion of manufacturing and textile industries in Bandung basin urbanization was increased. The population growth need for an enormous increase of settlements in the basin. Various types of industries scattered in regencies and

cities in the Saguling Lake water catchment area comprises 556 industries, of which 442 industries are textile that are the largest. In addition to textile industry, there are 8 units of paper industry, 11 units of leather tanning, 16 units of plastic and rubber industry, 14 units of chemical industries, 40 units of metal and electroplating, 25 units of food and beverages. They are spread in various regions, mostly in Bandung regency of 325 industries followed by Cimahi City 101 industries and 90 industries in Bandung City. Source of pollution. The textile industry, paper industry, leather industry and food-beverage industry are potential to become the sources of high organic substance pollution load, while metal and metal coating industries are potential to dispose of heavy metals [16].

3.2 Background concentration

Concentrations of Cd, Cr, Cu, and Pb at 22 Stream sediments located in the Saguling lake water catchment are presented in Figure 2.

Fig. 2. Concentrations of Cd, Cr, Cu, and Pb in Catchment Area of Saguling lake (mg/kg)

Concentration of Cd in catchment area of Saguling lake ranges from 0.17-0.53 mg/kg, the mean value 0.34 mg/kg. The lowest concentration in sampling point 7 (Ciheulang) and the highest in sampling point 11 (Halimun Mountain). Concentration of Cd in the earth's crust is 0.1 mg/kg while in average the concentration of Cd in the world's soil is 0.3 mg/kg [11,19]. Cd concentration in the Catchment area of Saguling lake is relatively higher than the concentration value in the earth's crust, however when compared to the average Cd concentration contained in the soil based on Mc Bride, 1994, the sampling points of 4 (Nanjung), 5 (Cisirung), 6 (Dayeuhkolot), 7 (Ciheulang), 8 (Wangisagara), and 15 (Cisanti Spring) are lower than the average Cd concentration contained in soil around the world

Cr concentration in the catchment area of Saguling lake range from 59.13-160.76 mg/kg, the mean value of 110.57 mg/kg. The lowest concentration is at sampling point 6 (Dayeuhkolot) and the highest at sampling point 11 (Halimun Mountain). Cr concentration in the earth's crust is 126 mg/kg while the average Cr concentration in the earth's soil is 90 mg/kg [11,19]. Cr concentrations in

the Catchment area of Saguling lake when compared to the concentration values contained in the Earth's crust are mostly lower, there are only the five sampling points above 90 mg/kg i.e. the sampling point 10 (Pacet), 11 (Halimun Mountain), 12 (Margamukti), 16 (Cisanti Springs 3), and 19 (Guha Mountain). Cr concentration contained in Catchment area of Saguling lake is higher than that of in world's soil

Cu concentrations in catchment area of Saguling lake range from 32.60-69.16 mg/kg, the mean value 49.93 mg/kg. The lowest concentration is at sampling point 16 (Cisanti Springs 3) and the highest at sampling point 6 (Dayeuh Kolot). Cu concentration in the earth's crust is 25 mg/kg while the average Cu concentration in the earth's soil is 45 mg/kg [11,19]. Pb concentrations in Catchment area of Saguling lake range from 3.80-43.63 mg/kg, the mean value 18.62 mg/kg. The lowest concentration is at sampling point 21 (Wayang Mountain 1) and the highest at sampling point 16 (Cisanti Springs 3). The concentration of Pb in the earth's crust is 14.8 mg/kg while the mean concentration of Pb in the world's soil is 20 mg/kg [11,19]. Table 4 describes the statistical parameters of heavy metals stream sediment samples from the Catchment area of Saguling lake

Table 4. Statistical parameters of heavy metals streams sediment samples from the catchment area of Saguling lake

expressed in mg/kg

Element	Min	Max	Mean	Median	St Dev
Cd	0.17	0.53	0.34	0.32	0.10
Cr	59.13	160.76	110.57	107.06	28.61
Cu	32.60	69.16	49.93	49.81	9.28
Pb	3.80	43.63	18.62	16.18	9.83

Table 5 describes the Cbg of some heavy metals from various sources.

Table 5. Cbg of element in sediment expressed in mg/kg

Amaa	Element				
Area	Cd	Cr	Cu	Pb	
Crust (a)	0.1	126	25	14.8	
World	0,3	90	45	20	
Average ^(b)					
River	1.26	62.1	11.5	57.8	
Sediment(c)					
Range in soil	0.06-1.1	7-221	6-80	10-84	
(d)					
River	$0.66 \pm$	nd	49.3 ±	7.3 ± 9.6	
Sediment ^(e)	0.69		39.3		
River	0.075	145	11.9	10.8	
Sediment ^(f)					
River	0.42	94.90	90.10	38.10	
Sediment ^(g)					
River	0.65	11.75	9.58	17.78	
Sediment ^(h)					
This study	0.34 ±	110.57 ±	49.93 ±	18.62 ±	
	0.10	28.61	9.28	9.83	

^a[19], ^b[11], ^c[15], ^d[6], ^e[4], ^f[5], ^g[3], ^h[14]

Based on literature of similar research, the value of Cbg at the site of research was determined by using the average value from the research location [18], and using

the minimum concentration value [8]. In this research, the value of Cbg is determined using the average metal concentration values from 22 sampling points referring to the study of [18] because the value is not much different to the value of metal concentration contained in the earth's crust and in the world's soil. Table 6 describes summary of research on quality assessment related to heavy metal contamination in several countries.

Table 6. Summary of research on quality assessment related to heavy metal contamination in several countries

Parameters	Refere		
Farameters	[18]	[8]	This study
Research site	Turkey's Upper Tigris River	Lake Veeranam, India	Lake Saguling West Java Province
Types of metal	As, Cd, Co, Cr, Cu, Ni, Pb, Zn	Cd, Cr, Cu, Ni, Pb, and Zn	Cd, Cr, Cu, Pb
Number of sampling points	6	28	22
The method of determinin g Cbg	Cbg using the average value of heavy metal concentration in uncontaminat ed sediments	Cbg based on the minimum concentrati on at the site of the research.	Cbg using the average value of heavy metal concentration in uncontaminat ed sediments.

Based on the comparison of Cbg referring to [8,12,18,19], the Cbg in Catchment area of Saguling lake takes the average value of results since it is not much different to the Cbg in the earth's crust and the average value in the world. The results of the analysis showed that the Cbg specifically: Cd 0.34 ± 0.10 mg/kg, Cr 110.57 ± 28.61 mg/kg, Cu 49.93 ± 9.28 mg/kg, Pb 18.62 ± 9.83 mg/kg.

3.3 Application of Cbg

Heavy metals in waters usually exist in low concentrations however the anthropogenic activity will increase their concentration, and cause problems to the waters. The sediment layer is an important part for tracking various pollutants such as heavy metals. The sediment layer can act as a source of pollutants in water body and potential to release heavy metals and other pollutants from their sedimentary bonds into the water column [20]. The water pollution level by heavy metals can be estimated by analyzing the concentrations of heavy metals present in water, sediments and aquatic organisms [2].

Concentrations of heavy metals contained in Saguling Lake sediment are presented in Table 7. The results of analysis showed that Cd concentration ranges from 13.22 to 23.2 mg/kg, Cr ranges from 95.85-197.98 mg/kg, Cu ranges from 37.94-152.53 mg/kg, and Pb Ranges from 20.31-32.74 mg/kg.

Table 7. Concentrations of heavy metal in Saguling lake (mg/kg)

(IIIg/Kg)					
Location Sampling	Cd	Cr	Cu	Pb	
1A	23.25	197.98	63.32	23.79	
1B	22.92	184.39	152.53	25.79	
2	20.92	160.10	135.35	29.11	
3	20.62	169.78	64.96	20.31	
4	22.90	191.02	87.25	32.74	
5	22.00	174.25	82.92	28.92	
6	19.15	157.97	132.80	27.9	
7	20.61	189.56	83.04	25.18	
8	18.64	152.16	73.36	21.18	
9	19.81	163.75	126.71	26.27	
10A	13.22	95.85	37.94	31.31	
10B	14.58	107.82	42.89	28.29	
Average	19.89	162.05	90.26	26.73	
Maximum	23.25	197.98	152.53	32.74	
Minimum	13.22	95.85	37.94	20.31	
Standard *	1.50	80.00	65.00	50.00	

^{*} ANZECC ISQG-Low, 1997

The calculation of sediment quality applied the (CF) using Cbg based on the result of this research, specifically: Cd: 0.34 ± 0.10 mg/kg, Cr: 110.57 ± 28.61 mg/kg, Cu: 49.93 ± 9.28 mg/kg, Pb: 18.62 ± 9.83 mg/kg. The results of calculation on sediment quality in Saguling lake are presented in Table 8. The table shows that the sediment has been contaminated by Cd at very high category, contaminated by Cr at moderate category, contaminated by Cu at moderate-considerable category, lastly contaminated by Pb at moderate category.

Table 8. Contamination Factor Category

Sampling Location	Cd	Cr	Cu	Pb
1A	Very High	Moderate	Moderated	Moderate
1B	Very High	Moderate	Considerable	Moderate
2	Very High	Moderate	Considerable	Moderate
3	Very High	Moderate	Moderate	Moderate
4	Very High	Moderate	Moderate	Moderate
5	Very High	Moderate	Moderate	Moderate
6	Very High	Moderate	Moderate	Moderate
7	Very High	Moderate	Moderate	Moderate
8	Very High	Moderate	Moderate	Moderate
9	Very High	Moderate	Moderate	Moderate
10A	Very High	Moderate	Moderate	Moderate
10B	Very High	Moderate	Moderate	Moderate

4 Conclusion

Based on the results of the analysis, the Cbg of this study are: Cd 0.34±0.10 mg/kg, Cr 110.57±28.61 mg/kg, Cu 49.93±9.28 mg/kg, Pb 18.62±9.83 mg/kg. The values of Cbg are determined to assess the sediment quality of Saguling Basin by applying the CF method. Based on the CF category, the sediment has been contaminated by Cd at very high category, contaminated by Cr at moderate

category, contaminated by Cu at moderate-considerable category, lastly contaminated by Pb at moderate category.

This research has been financially supported by State Minister for Research and Technology and Higher Education. Authors thank the anonymous reviewer for their critical and constructive comments of the manuscript. Equations should be centred and should be numbered with the number on the right-hand side.

References

- 1. ANZECC (Australian and New Zealand Environment and Conservation Council) ANZECC interim *sediment quality guidelines* (1997).
- 2. N. Belzile, Y.W. Chen, J.M. Gunn, S.S. Dixit. Environ Pollut; **130** (2004).
- 3. F. Botson, A.P. Karageorgis, E.M. Dassenakis, and M. Scoullos. Marine Pollutant Bulletin, **62** (2011)
- 4. A. Cobelo-Gracia and R. Prego. Marine Pollution Bulletin, **46** (2003)
- V. Dauvelter and S. Rognerrud. Chemosphare. 42 (2011)
- A.S. Ekwere, and A.A. Eluez. Research Journal of Applied Sciences Engineering and Technology, 4 (2012).
- 7. A. Galuszka. Poland Environmental Geology, **52** (2007).
- 8. G. Suresh, P. Sutharsan, V. Ramasamy, R. Venkatachalapathy. Ecotoxicology and Environmental Safety **84** (2012).
- 9. H.E. Hawkes and Webb, J.E. *Geochemistry in mineral exploration* New York: Harper (1962).
- 10. S. Manahan. E *Environmental Chemistry 8 Edition* USA, (2004).
- 11. J. Matschullat, R. Ottenstein and C. Reimann Environmental Geology **39**, (2000)
- 12. M.B. Mc Bride. *Environmental Chemistry of Soils* New York: Oxford University Press. 406. (1994)
- 13. G.S. Plumlee and M.J. Logsdon. Reviews in Economic Geology, **6A** (1995).
- 14. C. Reimann, P. Filzmoser and R.G. Garret. Science of the total environment, **346** (2005)
- 15. L. Ren-Ying, Y. Hao, Z. Zhi-Bao, L. Jun-Jie, S. Xiao-Hua, and J. Feng. Pedosphere, 17 (2007).
- 16. Report PT Indonesia Power UBP Saguling 1. http://www.indonesiapower.co.id
- 17. Sanjay Sakan, Gordan Devis, Environ Geochem Health **37** (2015).
- 18. D.C. Tomilson, J.G. Wilson, C.R. Haris and D.W. Jefferey, Helgol. Wiss. Meeresunters, **33**, (1980)
- 19. M. Varol, B. Sen. Catena 92, (2012).
- 20. K.H. Wedepohl. Cosmochimical. Acta 59 (1995).
- 21. Z Wang, R. Sun, H. Zhang, L. Chen. Environ. Sci. Eng. 2015, **9** (2) (2015).